Game Theoretic Models for Energy Production

Ronnie Sircar

Department of Operations Research and Financial Engineering Bendheim Center for Finance Program in Applied & Computational Mathematics Andlinger Center for Energy & the Environment

> Princeton University http://www.princeton.edu/~sircar

Game Theoretic Models of Energy Production

Recent steep decline in oil prices (around \$110 per barrel in June 2014 to ~ \$30 in April 2016, currently ~ \$70):

Drop was prompted in large part by OPEC's strategic decision not to decrease its oil output in the face of increased production of *shale oil* in the US, coming from fracking.

Heterogeneous Costs: just oil sources

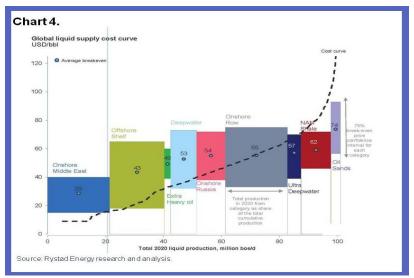


Figure: Estimated oil extraction costs from varying sources.

Energy Production

- Key features: supply competition between heterogeneous producers; investment in exploration and research in new tech.
- Long-running concerns about
 - dwindling fossil fuel reserves ('peak oil'); Hotelling (1931).
 - climate change, fueling transition to sustainable energy sources.
- Oligopoly models start from a competitive view of an idealized global energy market, in which *game theory* describes the outcome of competition.
- Game is in a Cournot framework: players choose quantities of production and prices are determined by total supply.
- Reasonable for energy production: major players determine their output relative to their production costs.

Game Changers

- Start with static, or one-period games to illustrate blockading.
- The nature of the complexities calls for a dynamic model in which there are
 - dwindling reserves of oil or coal, ramping up their scarcity value;
 - discoveries of new oil reserves (over 30 major finds in 2009);
 - technological innovation such as *fracking*;
 - government subsidies for renewables such as solar and wind;
 - varying costs of production,
- These phenomena are unpredictable and dramatic: requiring stochastic models, with significant 'jumps' (for instance in costs or reserves).
- Some of these issues can be analyzed using the *computational tractability* of continuum mean field games.

Some References

	# Players	Туре	Demand	Randomness	Replenish
Hotelling (1931)	1	-	linear	Determ.	No
Dasgupta and Stiglitz (1981)	N	Cournot	constant	single-shock	No
Deshmukh and Pliska (1983)	1	_	regimes	Poisson	Yes
Benchekroun (2008)	N	Cournot	linear	Determ.	Yes
Benchekroun et al (2009)	N	Cournot	linear	Determ.	Yes
Harris et al (2010)	1+g	Cournot	linear	Brownian	No
Ludkovski and Sircar (2011)	1+g	Cournot	linear	Poisson	Yes
Ledvina and Sircar (2012)	1+N	Bertrand	linear	Determ.	No
Ludkovski and Yang (2014)	1+g	Cournot	linear	Poisson	Yes
Colombo and Labrecciosa (2013)	N	Cournot	linear	Determ.	Yes
Dasarathy and Sircar (2014)	1+N	Cournot	linear	Poisson	Yes
Guéant et al (2010)	∞	Cournot	CES	Determ.	No
Chan and Sircar (2014)	∞	Bertrand	linear	Brownian	No

Figure: From survey paper *Game Theoretic Models for Energy Production* with M. Ludkovski in Fields Communications Volume : Commodities, Energy and Environmental Finance (2015)

Static Cournot Continuum Mean Field Game

- Market is specified by a decreasing linear inverse demand curve: P(Q) = 1 quantity.
- Continuum of oil producers labelled by "position" x and density m(x).
- The producer at position x has cost of production c(x) per unit.
- There is an alternative energy producer with cost c_0 .
- Oil producers choose q(x), alternative player chooses \hat{q} to solve

 $\max_{q \ge 0} q (1 - q - Q - \hat{q} - c(x)), \qquad \max_{\hat{q} \ge 0} \hat{q} (1 - \hat{q} - Q - c_0),$

in the sense of Nash equilibrium, where

$$Q = \langle q \rangle := \int q(x)m(x)\,dx.$$

Static CMFG Blockading

If an interior max:

$$q^*(x) = \frac{1}{2} (1 - Q - \hat{q} - c(x)), \qquad \hat{q}^* = \frac{1}{2} (1 - Q - c_0).$$

Integrating against m and solving for Q yields

$$Q = rac{1}{3} \left(1 - \hat{q}^* - \langle c \rangle \right), \qquad \Rightarrow \qquad Q = rac{1}{5} \left(1 + c_0 - 2 \langle c \rangle \right).$$

Consequently,

$$\hat{q}^* = rac{1}{5} \left(2 - 3c_0 + \langle c \rangle \right), \qquad q^*(x) = rac{1}{5} \left(1 - rac{5}{2}c(x) + c_0 + rac{1}{2} \langle c \rangle \right),$$

so $\hat{q} \ge 0$ only if $c_0 \le \frac{1}{3}(2 + \langle c \rangle)$.

Else blockading- alternative producer is out and

$$Q = rac{1}{3} \left(1 - \langle c \rangle
ight), \qquad \hat{q} = 0.$$

Keeping the Alternative Source Out

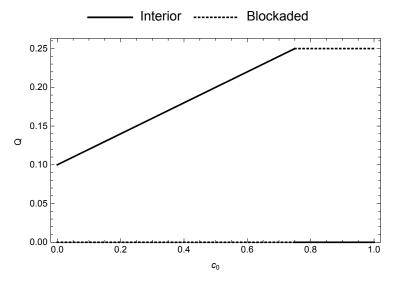


Figure: Static CMFG: oil output Q vs. alternative cost.

Dynamic Competition with an Expensive Energy Source

- Focus here on the exhaustible and cheap (zero cost) 'old' oil versus a more expensive and inexhaustible source:
- ▶ Renewables (solar) or shale oil (over short time scales).
 "∞+ g" (Major-Minor player game)
- Continuum of oil producers with initial density M(x) of reserves, x > 0, $\int M = 1$.
- Remaining reserves x(t) follow $\frac{dx}{dt} = -q_t$, where $q_t = q(t, x(t))$ is rate of production at time *t*, and x(t) is absorbed at zero.
- m(t, x) is the density of oil reserves at time t, and mean oil production rate is

$$Q(t) = \int_{\mathbb{R}_+} q(t, x) m(t, x) \, dx.$$

The alternative player produces from a source which is expensive but abundant: marginal cost is c > 0; rate of production is $\hat{q}(t)$.

Value Functions

• The price received by the exhaustible producer producing q(t, x)

$$p(t,x) = 1 - q(t,x) - \hat{q}(t) - Q(t),$$

while for the renewable producer the price is

$$\hat{p}(t) = 1 - \hat{q}(t) - Q(t).$$

• Oil producer starting at x(t) = x, producing at zero cost:

$$v(t,x) = \sup_{q \ge 0} \int_t^\infty e^{-r(s-t)} q(s,x(s)) p(s,x(s))_{\{x(s) > 0\}} \, ds.$$

Alternative inexhaustible energy producers:

$$g(t) = \sup_{\hat{q} \ge 0} \int_{t}^{\infty} e^{-r(s-t)} \hat{q}(s) (\hat{p}(s) - c)_{\{\eta(s) > 0\}} ds + \int_{t}^{\infty} e^{-r(s-t)} \frac{1}{4} (1-c)_{\{\eta(s) = 0\}}^{2} ds,$$

and $\eta(t) = \int_{\mathbb{R}^+} m(t, x) dx$, fraction of oil producers with reserves left.

Dynamic programming HJB equations

For v and g:

$$\partial_t v + \sup_{q \ge 0} \left[q \left(1 - q - Q(t) - \hat{q}(t) - \partial_x v \right) \right] = r v,$$

$$g'(t) + \sup_{\hat{q} \ge 0} \left[\hat{q} \left(1 - \hat{q} - Q(t) - c \right) \right] = r g.$$

The density m(t, x) of reserves x(t) follows the forward Kolmogorov (transport) equation

$$\partial_t m - \partial_x \left(q^* m \right) = 0,$$

with m(0, x) = M(x). The mean production by exhaustible producer is given by

$$Q(t) = \int_{\mathbb{R}_+} q^*(t, x) m(t, x) \, dx.$$

Solved up till endogenous time *T* when $\eta(T) = 0$, all oil exhausted, and v(T, x) = 0. Exhaustibility : v(t, 0) = 0.

Full Equations

► If the renewable producer is not blockaded,

$$q^*(t,x) = \frac{1}{4} \left(1 - Q(t) + c - 2\partial_x v \right),$$

and $\hat{q}^*(t) = \frac{1}{2} (1 - Q(t) - c)$. The HJB equations become

$$\partial_t v + \frac{1}{16} (1 - Q(t) + c - 2\partial_x v)^2 = rv,$$

$$g'(t) + \frac{1}{4} (1 - Q(t) - c)^2 = rg.$$

• If the renewable producer is blockaded, we have $\hat{q}^* = 0$ and

$$q^*(t,x) = \frac{1}{2} \left(1 - Q(t) - \partial_x v\right).$$

In this case the HJB equations become

$$\partial_t v + \frac{1}{4} \left(1 - Q(t) - \partial_x v \right)^2 = rv, \qquad g'(t) = rg.$$

With a finite number of exhaustible players, even in the two-player case, these equations are hard to handle numerically.

Numerical Solution

- Start with an initial guess Q^0 for the mean production. Then for n = 1, 2, ...:
- Step 1. Given Q^{n-1} solve the HJB equations numerically:

(a) The optimal strategy of the renewable producer is

$$\hat{q}^{n}(t) = \frac{1}{2} \left(1 - Q^{n-1}(t) - c \right)^{+}$$

(b) The exhaustible producer solves the optimal control problem

$$\partial_t v^n + \frac{1}{4} \left(1 - Q^{n-1}(t) - \partial_x v^n \right)_{bl}^2 + \frac{1}{16} \left(1 - Q^{n-1}(t) + c - 2\partial_x v^n \right)_{bl}^2 = r v^n.$$

The feedback production strategy of the exhaustible producer is

$$q^{n}(t,x) = \frac{1}{2} \left(1 - Q^{n-1}(t) - \partial_{x} v^{n} \right)_{bl} + \frac{1}{4} \left(1 - Q^{n-1}(t) + c - 2\partial_{x} v^{n} \right)_{bl}^{c}.$$

Numerical Solution (ctd.)

Step 2. Given q^n , solve the forward Kolmogorov equation

 $\partial_t m^n - \partial_x \left[m^n q^n \right] = 0.$

This gives the aggregate production Q^n for the next iteration

$$Q^{n}(t) = \int_{\mathbb{R}^{+}} q^{n}(t, x) m^{n}(t, x) \, dx.$$

Better to consider the tail distribution function

$$\eta(t,x) = \int_x^\infty m(t,y) \, dy.$$

which solves

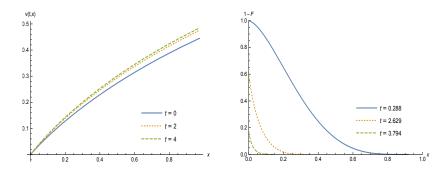
$$\partial_t \eta(t,x) - q(t,x)\partial_x \eta(t,x) = 0$$

with initial condition $\eta(0, x) = \int_x^\infty M(y) \, dy$ (can handle point masses).

Initialization of iterative algorithm: use the monopoly problem where the value function can be computed explicitly.

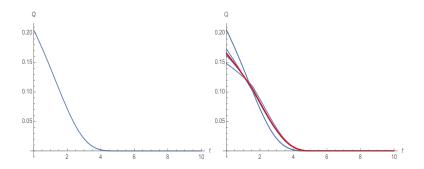
Numerical Results

Base case parameters: $r = 0.2, M \sim \text{Beta}(2, 4)$ and c = 0.9. Iterative algorithm converges rapidly, typically within 10 iterations.



Numerical Results

Base case parameters: r = 0.2, M ~ Beta(2, 4) and c = 0.9. Iterative algorithm converges rapidly, typically within 10 iterations.



Notice that the exhaustible producers slow down production in the presence of a renewable/alternative competitor.

Blockading of renewable/alternative producer

When c is high and oil is plentiful, energy price too low for alternative producer to enter the market. He is blockaded. Here c = 0.9.

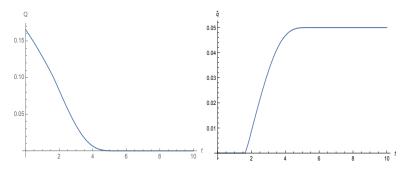


Figure: Production rates for the exhaustible (left) and renewable (right) producers. Notice the renewable producer is blockaded until about t = 1.5.

Strategic blockading against entry of alternative resources

When c is high enough, the oil producers may strategically increase their aggregate production in the short run to keep the alternative energy out of the market.

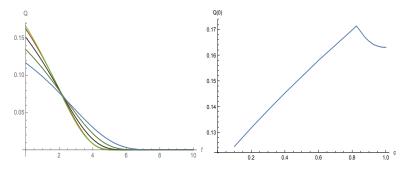


Figure: Left panel: the aggregate production rate Q for 5 different values of production costs c = 0, 0.2, 0.4, 0.6, 0.8. Right panel: initial production rate of the exhaustible producers. Notice the strategic blockading of entry for large c.

Existence & Uniqueness Theory

General analysis of mean field games (e.g. Lasry-Lions '07, Huang-Malhame-Caines '06, Bensoussan-Frehse-Yam '13, Cardaliaguet *et al.* '12-'15) deals with systems of the form

$$v_t + \frac{1}{2}\sigma^2 v_{xx} - rv + H(t, x, v_x) = V[m],$$

$$m_t - \frac{1}{2}\sigma^2 m_{xx} - (G(t, x, v_x)m)_x = 0,$$

where V[m] is a monotone operator.

In the case of oligopoly models, the coupling happens nonlocally in the Fokker-Planck equation:

$$v_t + \frac{1}{2}\sigma^2 v_{xx} - rv + H(t, v_x, [mv_x]) = 0,$$

$$m_t - \frac{1}{2}\sigma^2 m_{xx} - (G(t, v_x, [mv_x])m)_x = 0.$$

Existence & Uniqueness Theory

- ► In those models, interaction is through the mean of the state $\int xm$ (controlled McKean-Vlasov systems).
- For us, it is through the mean of the controls $\int qm$.
- The boundary condition at x = 0 (exhaustibility) is not addressed in the bulk of this theory, and the tractable examples on the full space are linear-quadratic MFGs.
- ▶ However, recently, Graber & Bensoussan '15 prove an existence and uniqueness theorem for a classical solution of this oligopoly system on a finite domain $[0, T] \times [0, L]$, basically a "hard analysis" for this specific problem.

Exploration and Random Discoveries

- So far: exhaustibility or scarcity leads to price increases/shocks INTERMEDIATE.
- However, proven reserves of crude oil rose 13% to 25.2 billion barrels in 2010.
- Multiple discoveries resulted in reasonably stable oil prices in the '80s.
- We analyze effect of exploration and random discoveries in a dynamic Cournot (continuum) game – SHORT TERM.

Resource Discovery

► The remaining reserves *X* of the oil producers follow

$$dX_t = -\mathbf{q}_t \, \mathbb{1}_{\{X_t > 0\}} \, dt + \delta \, dN_t,$$

where (N_t) is a controlled counting process with intensity λa_t , penalized by convex cost function $C(a_t)$.

- Each discovery leads to an increase in reserves by $\delta > 0$.
- Here we consider only oil producers with zero extraction costs (no alternative producers):

$$v(t,x) = \sup_{q,a} \mathbb{E}\left\{\int_t^\infty e^{-r(s-t)}\left\{q_s p_{s\{X_s>0\}} - \mathcal{C}(a_s)\right\} ds \,\middle|\, X_t = x\right\}.$$

Take power costs

$$C(a) = \frac{1}{\beta}a^{\beta} + \kappa a, \qquad \beta > 1, \kappa \ge 0.$$

This guarantees a finite *saturation point* $x_{sat} < \infty$ such that $a^*(x) = 0$ for $x > x_{sat}$, and (X_t) does become arbitrarily large infinitely often.

Numerical stationary solution to the mean field game:

Stationary Solution

Look for stationary solution to the mean field game equation system:

$$rv(x) = \sup_{q \ge 0} \left\{ q \left(1 - q - \epsilon Q - v'(x) \right) \right\} + \sup_{a \ge 0} \left\{ a\lambda \Delta v - C(a) \right\},$$

$$0 = -\frac{d}{dx} \left(q^*(x)m(x) \right) - \lambda \left\{ a^*(x - \delta)m(x - \delta) - a^*(x)m(x) \right\},$$

$$a^*(x) = \left(C' \right)^{-1} \left(\lambda \Delta v(x) \right), \quad q^*(x) = \frac{1}{2} \left(1 - \epsilon Q - v'(x) \right),$$

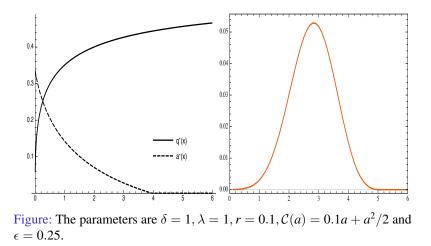
$$Q = \int_{\mathbb{R}_+} q^*(x)m(x) \, dx.$$

(1)

with 'revival' boundary condition

$$v(0) = \sup_{a \ge 0} \mathbb{E}\left[e^{-r\tau}v(\delta) - \int_0^\tau e^{-rt}\mathcal{C}(a)\,dt\right] = \sup_{a \ge 0} \frac{a\lambda v(\delta) - \mathcal{C}(a)}{\lambda a + r}.$$

Numerical Stationary Solution



Sample Game Path

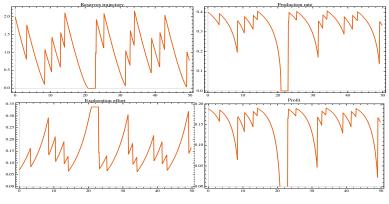


Figure: Trajectory of the game solution over time.

Ongoing Directions

- ▶ Incorporating cost curves: continuum of exhaustible producers with costs c(x) vs. continuum ($z \in [0, 1]$) of renewables with costs s(z).
- Most of the Cournot energy analyses have a fixed pricing (inverse demand) curve P(Q), typically P(Q) = 1 Q.
- But recent (2015-16) failed rallies in oil price could be due to uncertainty about China's demand for oil:
 - it grew 6-fold from 2003 to 2013;
 - ▶ it accounted for 45% of total growth in oil demand in that time.
- ▶ In 2015: China GDP growth 7.3%, slowest since 1990.
- Stochastic demand: take $P = Y_t Q$, where Y is China, India , Iran, ... MFG in random environment.
- Electricity markets, bid-stack, producers bid supply curves $p_i(q_i)$. Supply function equilibrium problems.