Deep learning algorithms for stochastic control and applications to energy storage problems

Huyên PHAM*

*University Paris Diderot, LPSM

Joint work with A. Bachrouf, University of Oslo C. Huré, University Paris Diderot, LPSM N. Langrené, CSIRO, Data61, Risklab Australia

> CAESARS 2018 Saclay, september 3-5, 2018

Discrete-time stochastic control on finite horizon

Markov Decision Process (MDP)

- State process $X = (X_n)_n$ in $\mathcal{X} \subset \mathbb{R}^d$, $n = 0, \dots, N$
- Controlled by $\alpha = (\alpha_n)_n$ action/policy: $\alpha_n = \pi_n(X_n)$ for some measurable sequence $\pi_n : \mathcal{X} \to \mathbb{A}$, $n = 0, \dots, N-1$.
- State dynamics in a random environment: $X = X^{\alpha}$

$$X_{n+1} = F_n(X_n, \alpha_n, \varepsilon_{n+1})$$

 \leftrightarrow One-step transition probabilities:

$$\begin{aligned} P_n^a(x, dx') &= & \mathbb{P}[X_{n+1}^\alpha \in dx' | X_n^\alpha = x, \alpha_n = a] \\ &= & \mathbb{P}[F_n(x, a, \varepsilon_{n+1}) \in dx'] \end{aligned}$$

• **Reward**: running reward $f_n(x, a)$ and terminal reward g(x)

Performance criterion

$$J_n(x,\alpha) = \mathbb{E}\Big[\sum_{k=n}^{N-1} f_n(X_n^{\alpha},\alpha_n) + g(X_N^{\alpha}) \Big| X_n^{\alpha} = x\Big]$$

▶ Goal: Find optimal performance V and optimal action/policy $\alpha^* \leftrightarrow \pi^* = (\pi_n^*)_n$ valued in $\mathbb{A}^{\mathcal{X}}$:

$$V_n(x)$$
 := $\sup_{\alpha} J_n(x, \alpha) = J_n(x, \alpha^*), \quad n = 0, \dots, N, \ x \in \mathcal{X}.$

Remark:

 MDP can also be viewed as time discretization of continuous-time stochastic control problem ↔ Bellman PDE

Dynamic Programming (DP) Bellman equation

From global to local optimization: Backward recursion on $V = (V_n)$ (Value function iteration)

$$\begin{cases} V_N(x) = g(x) \\ V_n(x) = \sup_{a \in \mathbb{A}} \left\{ \underbrace{f_n(x,a) + \mathbb{E}[V_{n+1}(X_{n+1}^{\alpha}) | X_n^{\alpha} = x, \alpha_n = a]}_{Q_n(x,a) := f_n(x,a) + P_n^a V_{n+1}(x)} \right\}, \quad n = N - 1, \dots, 0. \end{cases}$$

 \longrightarrow Optimal policy: $\pi^* = (\pi^*_n)_n$ from the *Q*-value function

$$\pi_n^*(x) \in \arg \max_{a \in \mathbb{A}} Q_n(x, a), \quad n = N - 1, \dots, 0$$

Remark.

 $\{V_n(X_n^*) + \sum_{k=0}^n f(X_n^*, \alpha_n^*), n = 0, \dots, N\}$, is a martingale:

$$V_n(x) = f_n(x, \pi_n^*(x)) + P_n^{\pi_n^*(x)} V_{n+1}(x).$$

< ∃ >

Numerical challenges

Two sources of curses of dimensionality:

- Computations of the conditional expectation operator $P_n^a V_{n+1}(x)$, n = 0, ..., N-1, for any $x \in \mathcal{X} \subset \mathbb{R}^d$, and $a \in \mathbb{A}$. Computational complexity in **high-dimension for the state space** \mathbb{R}^d and also the control space \mathbb{A} !
- Computation of the optimal policy: Supremum in a ∈ A of Q_n(x, a) = f_n(x, a) + P^a_nV_{n+1}(x), for each x ∈ X: → optimal policy π̂(x). Computational complexity in high dimension for the control space A!

Probabilistic numerical methods based on DP

- (i) Approximate the *Q*-value function (conditional expectation) by Monte-Carlo regression on: basis functions, neural networks, SVM, etc
 - MC regression in the spirit of Longstaff-Schwartz (for optimal stopping problems)
 - Main issue: simulation of the endogenous controlled process
- (ii) Optimal control is then "computed" from $\arg \max_{a \in \mathbb{A}} \hat{Q}_n(x, a)$ where \hat{Q} is an approximation of the *Q*-value function. Typically:
 - A finite set, or discretize A
 - Newton method for the search of extremum

Numerical methods by direct approximation (without DP)

• Control approximation: Focus directly on the (parametric) approximation $\pi = (\pi_n)$ of the policy on the whole period

$$\pi_n(x) = A(x; \theta_n), \quad n = 0, \ldots, N-1,$$

for some given function $A(., \theta)$ with parameters $\theta = (\theta_0, \dots, \theta_{N-1}) \in \mathbb{R}^{q \times N} \to \text{maximize over } \theta$

$$J_0(x_0, A(.; \theta_0), \ldots, A(.; \theta_{N-1})) = \mathbb{E}\Big[\sum_{n=0}^{N-1} f_n(X_n, A(X_n; \theta_n)) + g(X_N)\Big].$$

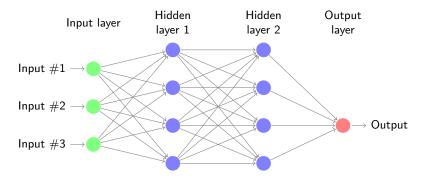
- Kou, Peng, Xu (16): E-M algorithm with basis functions for A
- J. Han, W. E, A. Jentzen (17): Deep neural network (DNN) for A and global optimization by stochastic gradient descent (SGD), see also P. Henry-Labordère (18)

Our approach and contributions

- Combine different ideas from maths (numerical probability) and computer science communities (reinforcement learning) to propose (and compare) three algorithms based on:
 - Dynamic programming (DP)
 - Deep Neural Networks (DNN) for the approximation/learning of
 - (i) Optimal policy
 - (ii) Value function
 - Monte-Carlo regressions with different characteristics:
 - Performance/policy iteration (PI) or hybrid iteration (HI)
 - Now or later/quantization
- Convergence analysis
- Numerical tests and an application to energy storage problems

Deep Neural networks (DNN): multilayer perceptron

Architecture of a DNN: composed of layers and neurons (units)



(Feedforward artificial NN)

4 E b

Mathematical representation of DNN

- DNN: composition of simple functions to approximate complicated ones \neq usual additive approximation theory
- ▶ Represented by parametrized function:

$$egin{array}{rcl} x\in \mathbb{R}^d &\mapsto & \Phi(x; heta) \,=\, \mathcal{L}^{out}\circ \mathcal{L}^L\circ\ldots \mathcal{L}^1(x), \ & \Phi_\ell &=& \mathcal{L}^\ell \Phi_{\ell-1} \,:=\, \sigma(w_\ell \Phi_{\ell-1}+b_\ell) \,\in\, \mathbb{R}^{d_\ell}, \end{array}$$

with *L* hidden layers (layer ℓ with d_{ℓ} units), activation function σ (Sigmoid, ReLu, ELU, etc), and weights $\theta = (w_{\ell}, b_{\ell})_{\ell}$.

4 E b

Mathematical representation of DNN

- DNN: composition of simple functions to approximate complicated ones \neq usual additive approximation theory
- ▶ Represented by parametrized function:

$$egin{array}{rcl} x\in \mathbb{R}^d &\mapsto & \Phi(x; heta) \,=\, \mathcal{L}^{out}\circ \mathcal{L}^L\circ\ldots \mathcal{L}^1(x), \ & \Phi_\ell &=\, \mathcal{L}^\ell \Phi_{\ell-1} \,:=\, \sigma(w_\ell \Phi_{\ell-1}+b_\ell) \,\in\, \mathbb{R}^{d_\ell}, \end{array}$$

with *L* hidden layers (layer ℓ with d_{ℓ} units), activation function σ (Sigmoid, ReLu, ELU, etc), and weights $\theta = (w_{\ell}, b_{\ell})_{\ell}$.

- Theoretical justification by universal approximation theorem (Hornick 91). Rate of convergence not yet well understood (partial results in the case of one hidden layer, see Bach 17).
- Key feature: automatic differentiation for computing derivatives of Φ used in SGD to find the "optimal" parameters.

Description of the algorithms Convergence analysis

Algo NNContPI: control learning by performance iteration

A combination of DP and Han, E, Jentzen algo:

• For n = N - 1, ..., 0: keep track of the approximated optimal policies $\hat{\pi}_k$, k = n + 1, ..., N - 1, and compute

$$\hat{\pi}_n \in \arg \max_{\pi} \mathbb{E} \Big[f_n(X_n, \pi(X_n)) + \underbrace{\sum_{k=n+1}^{N-1} f_k(\hat{X}_k, \hat{\pi}_k(\hat{X}_k)) + g(\hat{X}_N)}_{\hat{Y}_{n+1}^{\pi}} \Big]$$

where $X_n \rightsquigarrow \mu$ (probability distribution on \mathcal{X}), $(\hat{X}_k)_{k=n+1,...,N}$, generated from X_n , with control $(\pi, \hat{\pi}_k)_{k=n+1,...,N-1}$. \rightarrow Practical implementation:

- DNN for policy: $\pi(x) = A(x; \beta) \rightarrow \text{optimization over parameter } \beta$
- SGD based on training samples $X_n^{(m)}$, $(\hat{X}_k^{(m)})_k$, $m = 1, \dots, M \to \hat{\pi}_n^M = A(.; \hat{\beta}_n^M)$.

Description of the algorithms Convergence analysis

Algo NNContPI: control learning by performance iteration

A combination of DP and Han, E, Jentzen algo:

• For n = N - 1, ..., 0: keep track of the approximated optimal policies $\hat{\pi}_k$, k = n + 1, ..., N - 1, and compute

$$\hat{\pi}_n \in \arg \max_{\pi} \mathbb{E} \Big[f_n(X_n, \pi(X_n)) + \underbrace{\sum_{k=n+1}^{N-1} f_k(\hat{X}_k, \hat{\pi}_k(\hat{X}_k)) + g(\hat{X}_N)}_{\hat{Y}_{n+1}^{\pi}} \Big]$$

where $X_n \rightsquigarrow \mu$ (probability distribution on \mathcal{X}), $(\hat{X}_k)_{k=n+1,...,N}$, generated from X_n , with control $(\pi, \hat{\pi}_k)_{k=n+1,...,N-1}$. \rightarrow Practical implementation:

- DNN for policy: $\pi(x) = A(x; \beta) \rightarrow \text{optimization over parameter } \beta$
- SGD based on training samples $X_n^{(m)}$, $(\hat{X}_k^{(m)})_k$, $m = 1, \dots, M \to \hat{\pi}_n^M = A(.; \hat{\beta}_n^M)$.

Remarks.

1) No value function iteration: \hat{V}_n^M is simply computed as the gain functional associated to controls $(\hat{\pi}_k^M)_{k=n,\dots,N-1}$.

2) Low bias estimate, but possibly high variance estimate and large complexity, especially when N is large.

Description of the algorithms Convergence analysis

Algo Hybrid: control learning by hybrid iteration

- Initialization: $\hat{V}_N = g$
- For n = N 1, ..., 0:

(i) Compute the approximated optimal policy

$$\hat{\pi}_n \in \arg \max_{\pi} \mathbb{E} \left[f_n(X_n, \pi(X_n)) + \hat{V}_{n+1}(X_{n+1}^{\pi}) \right]$$

where $X_n \rightsquigarrow \mu$, $X_{n+1}^{\pi} \rightsquigarrow P_n^{\pi(X_n)}(X_n, dx')$. Implemented by

- DNN for policy: $\pi(x) = A(x; \beta) \rightarrow \text{optimization over parameter } \beta$
- SGD method based on training samples $X_n^{(m)}$, $m = 1, ..., M \rightarrow \hat{\pi}_n^M = A(.; \hat{\beta}_n^M)$.

Description of the algorithms Convergence analysis

Algo Hybrid: control learning by hybrid iteration

- Initialization: $\hat{V}_N = g$
- For n = N 1, ..., 0:

(i) Compute the approximated optimal policy

$$\hat{\pi}_n \in \arg \max_{\pi} \mathbb{E} \left[f_n(X_n, \pi(X_n)) + \hat{V}_{n+1}(X_{n+1}^{\pi}) \right]$$

where $X_n \rightsquigarrow \mu$, $X_{n+1}^{\pi} \rightsquigarrow P_n^{\pi(X_n)}(X_n, dx')$. Implemented by

- DNN for policy: $\pi(x) = A(x; \beta) \rightarrow \text{optimization over parameter } \beta$
- SGD method based on training samples $X_n^{(m)}$, $m = 1, ..., M \rightarrow \hat{\pi}_n^M = A(.; \hat{\beta}_n^M)$.

(ii) Updating: compute the approximated value function

$$\begin{split} \hat{V}_n(x) &= & \mathbb{E}\Big[f_n(X_n, \hat{\pi}_n(X_n)) + \hat{V}_{n+1}(X_{n+1}^{\hat{\pi}_n}) \big| X_n = x\Big] \\ &= & f_n(x, \hat{\pi}_n(x)) + P_n^{\hat{\pi}_n(x)} \hat{V}_{n+1}(x) \end{split}$$

by Monte-Carlo regression: now or later

Image: A image: A

Description of the algorithms Convergence analysis

Algo Hybrid-Now

Regress now on a set \mathcal{F} of functions on \mathcal{X} (from n + 1 to n)

$$\hat{V}_n \in \arg \min_{\Phi \in \mathcal{F}} \mathbb{E} \left| f_n(X_n, \hat{\pi}_n(X_n)) + \hat{V}_{n+1}(X_{n+1}^{\hat{\pi}_n}) - \Phi(X_n) \right|^2$$

- For instance, $\mathcal F$ class of DNN: $x \mapsto \Psi(x; \theta)$
- Optimization over θ by SGD based on training samples $X_n^{(m)} \rightsquigarrow \mu$, $m = 1, \dots, M, \rightarrow \hat{V}_n^M = \Psi(.; \hat{\theta}_n^M).$

運入 不運入 …

Description of the algorithms Convergence analysis

Algo Hybrid-LaterQ

Quantization + Regress later on a set \mathcal{F} of functions on \mathcal{X} :

• Approximate analytically by quantization the conditional expectation

$$\begin{split} \widetilde{\mathcal{V}}_n(X_n) &:= f_n(X_n, \hat{\pi}_n(X_n)) + \widetilde{\mathcal{P}}_n^{\hat{\pi}_n(X_n)} \hat{V}_{n+1}(X_n) \\ &:= f_n(X_n, \hat{\pi}_n(X_n)) + \sum_{j=1}^J p_j \hat{V}_{n+1} \big(F_n(X_n, \hat{\pi}_n(X_n), e_j) \big) \end{split}$$

where $\tilde{\varepsilon}_{n+1} \rightsquigarrow \sum_{j=1}^{J} p_j \delta_{e_j}$ is a *J*-quantizer of ε_{n+1} .

• Regress \tilde{V}_n on a set \mathcal{F} of functions on \mathcal{X} (e.g. DNN):

$$\hat{V}_n \in \arg\min_{\Phi\in\mathcal{F}} \mathbb{E}\Big[\ell\big(\tilde{V}_n(X_n) - \Phi(X_n)\big)\Big]$$

for some loss function ℓ on \mathbb{R} , e.g., $\ell(y) = y^2$.

Remark. Compared to Regress now, Regress Later MC reduces the variance of the estimated \hat{V}_n^M .

Description of the algorithms Convergence analysis

Case of finite control space: classification

•
$$Card(\mathbb{A}) = L < \infty$$
: $\mathbb{A} = \{a_1, \dots, a_L\}$

- Randomize the control: given a state value x, the controller chooses a_{ℓ} with a probability $p_{\ell}(x)$
 - (Deep) Neural Network for the probability vector $p = (p_\ell)_\ell$ with softmax output layer:

$$z \mapsto p_{\ell}(z;\beta) = \frac{\exp(\beta_{\ell}.z)}{\sum_{\ell=1}^{L} \exp(\beta_{\ell}.z)}, \quad \ell = 1, \ldots, L.$$

• Optimization over the probability vector p via the parameter β

Remark. In practice, we then use pure control strategies: given a state value x, choose $a_{\ell^*(x)}$ with

$$\ell^*(x) \in \arg \max_{\ell=1,...,L} p_\ell(x).$$

Description of the algorithms Convergence analysis

Convergence of the algo NNcontPI

- *M* number of training samples
- Neural Network for policy:
 - \mathcal{A}_{K}^{γ} : class of NN with one hidden layer, K neurons, and total variation norm smaller than γ

Theorem. Under suitable conditions, and assuming the existence of an optimal policy $(\pi_k^*)_k$, we have for all n = 0, ..., N - 1:

$$\mathbb{E}_{M} |V_{n}(X_{n}) - \hat{V}_{n}^{M}(X_{n})| = \mathcal{O}_{\mathbb{P}} \Big(\gamma \sqrt{\frac{\ln M}{M}} + \underbrace{\sup_{k=n,\dots,N-1} \inf_{A \in \mathcal{A}_{K}^{\gamma}} \left\| A(X_{k}) - \pi_{k}^{*}(X_{k}) \right\|_{L^{1}}}_{\varepsilon_{n}^{NN}(A)} \Big),$$

where \mathbb{E}_M stands for the expectation conditioned on the training set used for computing the approximated optimal policies $\hat{\pi}_k^M$, and $(X_k)_k$ is the corresponding controlled process starting from $X_n \rightsquigarrow \mu$.

Proof. Arguments from statistical learning theory: Györfi et al. (02)

Description of the algorithms Convergence analysis

Convergence of the algo Hybrid

- *M* number of training samples
- Neural Network for policy and value function:
 - $\mathcal{A}^{\gamma}_{\mathcal{K}}$: class of NN (valued in A) with one hidden layer, \mathcal{K} neurons, and total variation norm smaller than γ
 - $\mathcal{F}^{\gamma}_{\mathcal{K}}$: class of NN (valued in \mathbb{R}) with one hidden layer, \mathcal{K} neurons, and total variation norm smaller than γ

Theorem. Under suitable conditions, and assuming the existence of an optimal policy $(\pi_k^*)_k$, we have for all n = 0, ..., N - 1:

$$\mathbb{E}_{M} | V_{n}(X_{n}) - \hat{V}_{n}^{M}(X_{n}) | = \mathcal{O}_{\mathbb{P}} \Big(\gamma^{2} \sqrt{K \frac{\ln M}{M}} + \sup_{\substack{k=n,\dots,N-1}} \inf_{A \in \mathcal{A}_{K}^{\gamma}} \left\| A(X_{k}) - \pi_{k}^{*}(X_{k}) \right\|_{L^{1}} \Big) + \underbrace{\sup_{k=n,\dots,N} \inf_{\Psi \in \mathcal{F}_{K}^{\gamma}} \left\| \Psi(X_{k}) - V_{k}(X_{k}) \right\|_{L^{2}}}_{\in \mathbb{P}^{NN}(V)} \Big).$$

Numerical tests Gas storage valuation Smart grid management

A semi-linear PDE with quadratic gradient term

$$\begin{cases} \frac{\partial v}{\partial t} + \Delta_x v - |D_x v|^2 &= 0, \quad (t, x) \in [0, T) \times \mathbb{R}^d \\ v(T, x) &= g(x) \end{cases}$$

This PDE can be written as an HJB equation associated to a stochastic control problem whose discrete-time version (time step h = T/N) is:

$$V_0(x_0) = \inf_{\alpha} \mathbb{E} \Big[\sum_{n=0}^{N-1} |\alpha_n|^2 h + g(X_N^{\alpha}) \Big]$$

$$X_{n+1}^{\alpha} = X_n^{\alpha} + 2\alpha_n h + \sqrt{2} \Delta W_{(n+1)h}, \quad X_0^{\alpha} = x_0.$$

 \rightarrow Explicit solution (via Hopf-Cole transformation):

$$V_0(x_0) = -\ln\left(\mathbb{E}\Big[\exp\left(-g(x_0+\sqrt{2}W_T)\right)\Big]\Big).$$

글 🖌 🖌 글 🕨

Numerical tests Gas storage valuation Smart grid management

Implementation

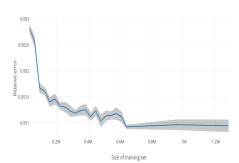
Algo Hybrid-Now

- N = 20 time steps, T = 1, h = 1/30.
- DNN for policy (resp. value function): function from $\mathcal{X} = \mathbb{R}^d$ into $\mathbb{A} = \mathbb{R}^d$ (resp. \mathbb{R}):
 - Input layer with d neurons
 - 3 hidden layers with d + 10 neurons each
 - Output layer with d neurons (resp. 1 neuron)
- Exponential Linear Unit (ELU) activation function
- Optimization with Adam method in TensorFlow
 - Training distribution $\mu \rightsquigarrow \mathcal{N}(x_0, \sqrt{2h}I_d)$.

Numerical tests Gas storage valuation Smart grid management

Test 1: from Han, E, Jentzen (17)

• $d = 100, g(x) = \ln \left(\frac{1}{2} (1 + |x|^2) \right).$



Relative error w.r.t. size of training set

Figure: Relative error of the Algo Hybrid-Now for $V_0(x_0 = 0)$. RelError = 0.092%; Standard deviation of $\hat{V}_0^M(0) = 0.00191\%$

Numerical tests Gas storage valuation Smart grid management

Model setup

Real-options valuation of gas storage (discrete-time version of the Carmona-Ludkovski model)

- Gas (random) price $(P_n)_n$
- Gas inventory (C_n)_n controlled by the decision α_n to inject, do nothing, or withdraw gas:

$$C_{n+1} = \begin{cases} C_n + b_{in} & \text{if } \alpha_n = +1 \quad (\text{injection/buy gas}) \\ C_n & \text{if } \alpha_n = 0 \quad (\text{do nothing}) \\ C_n - s_{out} & \text{if } \alpha_n = -1 \quad (\text{withdraw/sell gas}) \end{cases}$$

with b_{in} , $s_{out} > 0$.

- Physical inventory constraint:

$$C_n \in [C_{min}, C_{max}].$$

∃ >

Numerical tests Gas storage valuation Smart grid management

Control problem

• Maximize over α on finite horizon N:

$$\mathbb{E}\Big[\sum_{k=0}^{N-1}f(P_n,C_n,\alpha_n) + g(P_N,C_N)\Big]$$

with

• Revenue at any time n:

$$f(p, c, a) = \begin{cases} -b_{in}p - \kappa c & \text{if } a = +1 & (\text{injection/buy gas}) \\ -\kappa c & \text{if } a = 0 & (\text{do nothing}) \\ s_{out}p - \kappa c & \text{if } a = -1 & (\text{withdraw/sell gas}) \end{cases}$$

with storage cost $\kappa > 0$.

• Terminal condition: penalization for having less gas than initially

$$g(p,c) = -\mu p(C_0-c)_+.$$

with $\mu > 0$.

∃ >

Numerical tests Gas storage valuation Smart grid management

Numerical results

• Model parameters:

• Mean-reverting gas price around $\bar{p}=$ 5, with rate $\beta=$ 0.5

$$P_{n+1} = \bar{p}(1-\beta) + \beta P_n + \xi_{n+1}, \ \xi_n \rightsquigarrow \mathcal{N}(0, \sigma^2 = 0.05), \ P_0 = 4,$$

•
$$b_{in} = 0.06$$
, $s_{out} = 0.25$, $\kappa = 0.01$,

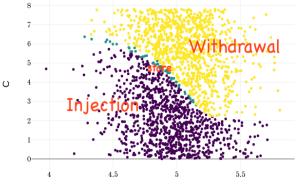
- N = 30, $\mu = 2$, $C_0 = 4$, $C_{min} = 0$, $C_{max} = 8$.
- Implementation by Algo NNContPI with DNN classification:
 - 3 hidden layers with 15 + 15 + 5 neurons, output layer with 3 neurons
 - ELU activation function
 - Training samples of size M = 250000

★ Ξ ►

Gas storage valuation Smart grid management

Optimal policy regions

Decision at time 19



Ρ

æ

Numerical tests Gas storage valuation Smart grid management

Optimal policy regions varying in time

문 ▶ ★ 문 ▶

Numerical tests Gas storage valuation Smart grid management

Value function varying in time

- ∢ ≣ ▶

э

Numerical tests Gas storage valuation Smart grid management

Model description

Discrete-time version of model in Heynmann et al. (17)

- Microgrid:
 - Generator (G) ightarrow power ${\it G}_n=\pi_g$ when turn on
 - Photovoltaic (PV) \rightarrow electricity production $(P_n)_n$ in $[P_{min}, P_{max}]$
 - Battery storage with capacity (C_n) in $[C_{min}, C_{max}]$
- Power demand (D_n)
- Manager decisions: $\alpha = (\alpha^{g}, \alpha^{S})$
 - $\alpha_n^g = 1$ (turn on), $\alpha_n^g = 0$ (turn off)
 - $\alpha_n^{S} \in [0, P_n]$: amount of (PV) energy transferred to satisfy demand
 - Excess (resp. lack) of energy from (G) and (PV)/Demand for charging (resp. discharging) battery

・ 同 ト ・ ヨ ト ・ ヨ ト

Numerical tests Gas storage valuation Smart grid management

Control problem

Minimize over $\alpha = (\alpha_n^g, \alpha_n^S)_n$ valued in $\{0, 1\} \times [0, P_n]$

$$\mathbb{E}\Big[\sum_{n=0}^{N-1} |G_n|^2\Big] \quad \text{subject to the physical constraints on } (C_n),$$

(We ignore here switching cost for turning on/off the generator).

Remark. The constraint on (C_n) are dealt with by penalization in the objective functional.

Image: Second second

Numerical tests Gas storage valuation Smart grid management

Numerical results

• Model parameters

- Additive model for (P_n^S) valued in [0.25, 1], $P_0 = 0.5$
- Mean-reverting process for (D_n) around $\bar{D} = 0.5$, and valued in [0.1, 1], $D_0 = 0.4$

•
$$\pi_g = 0.8$$
, $C_{min} = 0$, $C_{max} = 1$

- N = 5, penalty parameter for the constraints = 10000
- Implementation by Algo NNContPI with DNN classification for generator policy:
 - $\bullet~3$ hidden layers with 80 +~50~+~30 neurons, output layer with 2 +~1 neurons
 - ELU activation function
 - Training samples of size $M = 2^{16}$

Numerical tests Gas storage valuation Smart grid management

Turn on (red)/Turn off (blue) policy regions when increasing PV production

- ∢ ⊒ →

Numerical tests Gas storage valuation Smart grid management

Optimal transfer from PV when increasing battery charge

< ∃ →

Concluding remarks

- Machine learning meets stochastic control
 - Neural network regression
 - Control learning
- We analyzed and tested three algorithms

Algo	Bias estimate	Variance	Complexity	Dimension
NNContPI	+	-	-	+
Hybrid-Now	-	+	+	+
Hybrid-LaterQ	-	++	+	-

- Future work:
 - Extension to mean-field control problems ...