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N. Langrené, CSIRO, Data61, Risklab Australia

CAESARS 2018
Saclay, september 3-5, 2018

Huyên PHAM Deep learning algorithms for stochastic control



Introduction
DNN

Algorithms
Numerical applications

Conclusion

Discrete-time stochastic control on finite horizon

Markov Decision Process (MDP)

• State process X = (Xn)n in X ⊂ Rd , n = 0, . . . ,N

• Controlled by α = (αn)n action/policy: αn = πn(Xn) for some
measurable sequence πn : X → A , n = 0, . . . ,N − 1.

• State dynamics in a random environment: X = Xα

Xn+1 = Fn(Xn, αn, εn+1)

↔ One-step transition probabilities:

Pa
n(x , dx ′) = P

[
Xα
n+1 ∈ dx ′|Xα

n = x , αn = a
]

= P
[
Fn(x , a, εn+1) ∈ dx ′

]
• Reward: running reward fn(x , a) and terminal reward g(x)
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Performance criterion

Jn(x , α) = E
[ N−1∑

k=n

fn(Xα
n , αn) + g(Xα

N )
∣∣Xα

n = x
]

I Goal: Find optimal performance V and optimal action/policy α∗ ↔
π∗ = (π∗n)n valued in AX :

Vn(x) := sup
α

Jn(x , α) = Jn(x , α∗), n = 0, . . . ,N, x ∈ X .

Remark:

MDP can also be viewed as time discretization of continuous-time
stochastic control problem ↔ Bellman PDE
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Dynamic Programming (DP) Bellman equation

From global to local optimization: Backward recursion on V = (Vn)
(Value function iteration)


VN(x) = g(x)
Vn(x) = sup

a∈A

{
fn(x , a) + E[Vn+1(Xα

n+1)
∣∣Xα

n = x , αn = a
]︸ ︷︷ ︸

Qn(x,a) := fn(x,a)+Pa
nVn+1(x)

}
, n = N − 1, . . . , 0.

−→ Optimal policy: π∗ = (π∗n )n from the Q-value function

π∗n (x) ∈ argmax
a∈A

Qn(x , a), n = N − 1, . . . , 0

Remark.
{Vn(X ∗n ) +

∑n
k=0 f (X ∗n , α

∗
n), n = 0, . . . ,N}, is a martingale:

Vn(x) = fn(x , π∗n (x)) + P
π∗
n (x)

n Vn+1(x).
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Numerical challenges

Two sources of curses of dimensionality:

Computations of the conditional expectation operator Pa
nVn+1(x), n

= 0, . . . ,N − 1, for any x ∈ X ⊂ Rd , and a ∈ A. Computational
complexity in high-dimension for the state space Rd and also the
control space A!

Computation of the optimal policy: Supremum in a ∈ A of Qn(x , a)
= fn(x , a) + Pa

nVn+1(x), for each x ∈ X : → optimal policy π̂(x).
Computational complexity in high dimension for the control
space A!
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Probabilistic numerical methods based on DP

(i) Approximate the Q-value function (conditional expectation) by
Monte-Carlo regression on: basis functions, neural networks, SVM,
etc

MC regression in the spirit of Longstaff-Schwartz (for optimal
stopping problems)
Main issue: simulation of the endogenous controlled process

(ii) Optimal control is then “computed” from argmaxa∈A Q̂n(x , a)

where Q̂ is an approximation of the Q-value function. Typically:

A finite set, or discretize A
Newton method for the search of extremum
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Numerical methods by direct approximation (without DP)

• Control approximation: Focus directly on the (parametric)
approximation π = (πn) of the policy on the whole period

πn(x) = A(x ; θn), n = 0, . . . ,N − 1,

for some given function A(., θ) with parameters θ = (θ0, . . . , θN−1) ∈
Rq×N → maximize over θ

J0

(
x0,A(.; θ0), . . . ,A(.; θN−1)

)
= E

[ N−1∑
n=0

fn(Xn,A(Xn; θn)) + g(XN)
]
.

Kou, Peng, Xu (16): E-M algorithm with basis functions for A

J. Han, W. E, A. Jentzen (17): Deep neural network (DNN) for A
and global optimization by stochastic gradient descent (SGD), see
also P. Henry-Labordère (18)
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Our approach and contributions

• Combine different ideas from maths (numerical probability) and
computer science communities (reinforcement learning) to propose (and
compare) three algorithms based on:

Dynamic programming (DP)

Deep Neural Networks (DNN) for the approximation/learning of

(i) Optimal policy
(ii) Value function

Monte-Carlo regressions with different characteristics:

- Performance/policy iteration (PI) or hybrid iteration (HI)
- Now or later/quantization

• Convergence analysis

• Numerical tests and an application to energy storage problems
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Deep Neural networks (DNN): multilayer perceptron

Architecture of a DNN: composed of layers and neurons (units)

Input #1

Input #2

Input #3

Output

Hidden
layer 1

Hidden
layer 2

Input layer
Output

layer

(Feedforward artificial NN)
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Mathematical representation of DNN

• DNN: composition of simple functions to approximate complicated
ones 6= usual additive approximation theory

I Represented by parametrized function:

x ∈ Rd 7→ Φ(x ; θ) = Lout ◦ LL ◦ . . .L1(x),

Φ` = L`Φ`−1 := σ(w`Φ`−1 + b`) ∈ Rd` ,

with L hidden layers (layer ` with d` units), activation function σ (Sigmoid,
ReLu, ELU, etc), and weights θ = (w`, b`)`.

Theoretical justification by universal approximation theorem
(Hornick 91). Rate of convergence not yet well understood (partial
results in the case of one hidden layer, see Bach 17).

Key feature: automatic differentiation for computing derivatives of
Φ used in SGD to find the “optimal” parameters.
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Description of the algorithms
Convergence analysis

Algo NNContPI: control learning by performance iteration

A combination of DP and Han, E, Jentzen algo:

• For n = N − 1, . . . , 0: keep track of the approximated optimal policies π̂k , k
= n + 1, . . . ,N − 1, and compute

π̂n ∈ arg max
π

E
[
fn(Xn, π(Xn)) +

N−1∑
k=n+1

fk (X̂k , π̂k (X̂k )) + g(X̂N)

︸ ︷︷ ︸
Ŷπn+1

]

where Xn ; µ (probability distribution on X ), (X̂k )k=n+1,...,N , generated from Xn,
with control (π, π̂k )k=n+1,...,N−1. → Practical implementation:

DNN for policy: π(x) = A(x ;β) → optimization over parameter β

SGD based on training samples X
(m)
n , (X̂

(m)
k )k , m = 1, . . . ,M → π̂M

n = A(.; β̂M
n ).

Remarks.
1) No value function iteration: V̂M

n is simply computed as the gain functional
associated to controls (π̂M

k )k=n,...,N−1.
2) Low bias estimate, but possibly high variance estimate and large complexity,
especially when N is large.
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Description of the algorithms
Convergence analysis

Algo Hybrid: control learning by hybrid iteration

• Initialization: V̂N = g

• For n = N − 1, . . . , 0:

(i) Compute the approximated optimal policy

π̂n ∈ argmax
π

E
[
fn(Xn, π(Xn)) + V̂n+1(Xπ

n+1)
]

where Xn ; µ, Xπ
n+1 ; P

π(Xn)
n (Xn, dx

′). Implemented by

DNN for policy: π(x) = A(x ;β) → optimization over parameter β

SGD method based on training samples X
(m)
n , m = 1, . . . ,M → π̂M

n

= A(.; β̂M
n ).

(ii) Updating: compute the approximated value function

V̂n(x) = E
[
fn(Xn, π̂n(Xn)) + V̂n+1(X π̂n

n+1)
∣∣Xn = x

]
= fn(x , π̂n(x)) + P π̂n(x)

n V̂n+1(x)

by Monte-Carlo regression: now or later
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Description of the algorithms
Convergence analysis

Algo Hybrid-Now

Regress now on a set F of functions on X (from n + 1 to n)

V̂n ∈ arg min
Φ∈F

E
∣∣∣fn(Xn, π̂n(Xn)) + V̂n+1(X π̂n

n+1) − Φ(Xn)
∣∣∣2

For instance, F class of DNN: x 7→ Ψ(x ; θ)

Optimization over θ by SGD based on training samples X
(m)
n ; µ,

m = 1, . . . ,M, → V̂M
n = Ψ(.; θ̂Mn ).
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Description of the algorithms
Convergence analysis

Algo Hybrid-LaterQ

Quantization + Regress later on a set F of functions on X :

Approximate analytically by quantization the conditional expectation

Ṽn(Xn) := fn(Xn, π̂n(Xn)) + P̃n
π̂n(Xn)V̂n+1(Xn)

:= fn(Xn, π̂n(Xn)) +
J∑

j=1

pj V̂n+1

(
Fn(Xn, π̂n(Xn), ej)

)
where ε̃n+1 ;

∑J
j=1 pjδej is a J-quantizer of εn+1.

Regress Ṽn on a set F of functions on X (e.g. DNN):

V̂n ∈ arg min
Φ∈F

E
[
`
(
Ṽn(Xn) − Φ(Xn)

)]
for some loss function ` on R, e.g., `(y) = y 2.

Remark. Compared to Regress now, Regress Later MC reduces the variance of

the estimated V̂M
n .

Huyên PHAM Deep learning algorithms for stochastic control



Introduction
DNN

Algorithms
Numerical applications

Conclusion

Description of the algorithms
Convergence analysis

Case of finite control space: classification

• Card(A) = L < ∞: A = {a1, . . . , aL}

• Randomize the control: given a state value x , the controller chooses a`
with a probability p`(x)

(Deep) Neural Network for the probability vector p = (p`)` with
softmax output layer:

z 7−→ p`(z ;β) =
exp(β`.z)∑L
`=1 exp(β`.z)

, ` = 1, . . . , L.

Optimization over the probability vector p via the parameter β

Remark. In practice, we then use pure control strategies: given a state
value x , choose a`∗(x) with

`∗(x) ∈ arg max
`=1,...,L

p`(x).
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Description of the algorithms
Convergence analysis

Convergence of the algo NNcontPI

• M number of training samples

• Neural Network for policy:

AγK : class of NN with one hidden layer, K neurons, and total
variation norm smaller than γ

Theorem. Under suitable conditions, and assuming the existence of an
optimal policy (π∗k )k , we have for all n = 0, . . . ,N − 1:

EM

∣∣Vn(Xn)− V̂M
n (Xn)

∣∣ = OP

(
γ

√
lnM

M
+ sup

k=n,...,N−1
inf

A∈Aγ
K

∥∥A(Xk)− π∗k (Xk)
∥∥
L1︸ ︷︷ ︸

εNNn (A)

)
,

where EM stands for the expectation conditioned on the training set used for
computing the approximated optimal policies π̂M

k , and (Xk)k is the
corresponding controlled process starting from Xn ; µ.

Proof. Arguments from statistical learning theory: Györfi et al. (02)
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Description of the algorithms
Convergence analysis

Convergence of the algo Hybrid

• M number of training samples

• Neural Network for policy and value function:

AγK : class of NN (valued in A) with one hidden layer, K neurons,
and total variation norm smaller than γ
FγK : class of NN (valued in R) with one hidden layer, K neurons,
and total variation norm smaller than γ

Theorem. Under suitable conditions, and assuming the existence of an
optimal policy (π∗k )k , we have for all n = 0, . . . ,N − 1:

EM

∣∣Vn(Xn)− V̂M
n (Xn)

∣∣ = OP

(
γ2

√
K

lnM

M
+ sup

k=n,...,N−1
inf

A∈Aγ
K

∥∥A(Xk)− π∗k (Xk)
∥∥
L1︸ ︷︷ ︸

εNNn (A)

+ sup
k=n,...,N

inf
Ψ∈Fγ

K

∥∥Ψ(Xk)− Vk(Xk)
∥∥

L2︸ ︷︷ ︸
εNN
n (V )

)
.
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Numerical tests
Gas storage valuation
Smart grid management

A semi-linear PDE with quadratic gradient term

{
∂v

∂t
+ ∆xv − |Dxv |2 = 0, (t, x) ∈ [0,T )× Rd

v(T , x) = g(x)

This PDE can be written as an HJB equation associated to a stochastic
control problem whose discrete-time version (time step h = T/N) is:

V0(x0) = inf
α
E
[ N−1∑

n=0

|αn|2h + g(Xα
N )
]

Xα
n+1 = Xα

n + 2αnh +
√

2 ∆W(n+1)h, Xα
0 = x0.

→ Explicit solution (via Hopf-Cole transformation):

V0(x0) = − ln
(
E
[

exp
(
− g(x0 +

√
2WT )

)])
.
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Numerical tests
Gas storage valuation
Smart grid management

Implementation

Algo Hybrid-Now

• N = 20 time steps, T = 1, h = 1/30.

• DNN for policy (resp. value function): function from X = Rd into A =
Rd (resp. R):

Input layer with d neurons

3 hidden layers with d + 10 neurons each

Output layer with d neurons (resp. 1 neuron)

• Exponential Linear Unit (ELU) activation function

• Optimization with Adam method in TensorFlow

Training distribution µ ; N
(
x0,
√

2hId
)
.
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Numerical tests
Gas storage valuation
Smart grid management

Test 1: from Han, E, Jentzen (17)

• d = 100, g(x) = ln
(

1
2 (1 + |x |2)

)
.

Figure: Relative error of the Algo Hybrid-Now for V0(x0 = 0).

RelError = 0.092%; Standard deviation of V̂M
0 (0) = 0.00191%
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Numerical tests
Gas storage valuation
Smart grid management

Model setup

Real-options valuation of gas storage (discrete-time version of the
Carmona-Ludkovski model)

Gas (random) price (Pn)n

Gas inventory (Cn)n controlled by the decision αn to inject, do
nothing, or withdraw gas:

Cn+1 =

 Cn + bin if αn = +1 (injection/buy gas)
Cn if αn = 0 (do nothing)
Cn − sout if αn = −1 (withdraw/sell gas)

with bin, sout > 0.

- Physical inventory constraint:

Cn ∈ [Cmin,Cmax ].

Huyên PHAM Deep learning algorithms for stochastic control
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Numerical tests
Gas storage valuation
Smart grid management

Control problem

• Maximize over α on finite horizon N:

E
[ N−1∑

k=0

f (Pn,Cn, αn) + g(PN ,CN)
]

with

Revenue at any time n:

f (p, c, a) =


−binp − κc if a = +1 (injection/buy gas)
−κc if a = 0 (do nothing)
soutp − κc if a = −1 (withdraw/sell gas)

with storage cost κ > 0.

Terminal condition: penalization for having less gas than initially

g(p, c) = −µp(C0 − c)+.

with µ > 0.
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Numerical tests
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Smart grid management

Numerical results

• Model parameters:

Mean-reverting gas price around p̄ = 5, with rate β = 0.5

Pn+1 = p̄(1− β) + βPn + ξn+1, ξn ; N (0, σ2 = 0.05), P0 = 4,

bin = 0.06, sout = 0.25, κ = 0.01,

N = 30, µ = 2, C0 = 4, Cmin = 0, Cmax = 8.

• Implementation by Algo NNContPI with DNN classification:

3 hidden layers with 15 + 15 + 5 neurons, output layer with 3
neurons

ELU activation function

Training samples of size M = 250000
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Numerical tests
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Optimal policy regions
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Numerical tests
Gas storage valuation
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Optimal policy regions varying in time
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Numerical tests
Gas storage valuation
Smart grid management

Value function varying in time
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Numerical tests
Gas storage valuation
Smart grid management

Model description

Discrete-time version of model in Heynmann et al. (17)

• Microgrid:

Generator (G) → power Gn = πg when turn on

Photovoltaic (PV) → electricity production (Pn)n in [Pmin,Pmax ]

Battery storage with capacity (Cn) in [Cmin,Cmax ]

• Power demand (Dn)

• Manager decisions: α = (αg , αS)

αg
n = 1 (turn on), αg

n = 0 (turn off)

αS
n ∈ [0,Pn]: amount of (PV) energy transferred to satisfy demand

Excess (resp. lack) of energy from (G) and (PV)/Demand for
charging (resp. discharging) battery

Huyên PHAM Deep learning algorithms for stochastic control
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Numerical tests
Gas storage valuation
Smart grid management

Control problem

Minimize over α = (αg
n , α

S
n )n valued in {0, 1} × [0,Pn]

E
[ N−1∑
n=0

|Gn|2
]

subject to the physical constraints on (Cn),

(We ignore here switching cost for turning on/off the generator).

Remark. The constraint on (Cn) are dealt with by penalization in the
objective functional.
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Numerical tests
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Numerical results

• Model parameters

Additive model for (PS
n ) valued in [0.25, 1], P0 = 0.5

Mean-reverting process for (Dn) around D̄ = 0.5, and valued in [0.1, 1],
D0 = 0.4

πg = 0.8, Cmin = 0, Cmax = 1

N = 5, penalty parameter for the constraints = 10000

• Implementation by Algo NNContPI with DNN classification for
generator policy:

3 hidden layers with 80 + 50 + 30 neurons, output layer with 2 + 1
neurons

ELU activation function

Training samples of size M = 216

Huyên PHAM Deep learning algorithms for stochastic control
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Numerical tests
Gas storage valuation
Smart grid management

Turn on (red)/Turn off (blue) policy regions when
increasing PV production
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Numerical tests
Gas storage valuation
Smart grid management

Optimal transfer from PV when increasing battery charge
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Concluding remarks

• Machine learning meets stochastic control

Neural network regression

Control learning

• We analyzed and tested three algorithms

Algo Bias estimate Variance Complexity Dimension

NNContPI + - - +
Hybrid-Now - + + +

Hybrid-LaterQ - ++ + -

• Future work:

Extension to mean-field control problems ...

Huyên PHAM Deep learning algorithms for stochastic control
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