
Control of Distributed Energy Resources:
PDEs and Hopfield Methods

Scott Moura

Assistant Professor | eCAL Director

University of California, Berkeley

caesars2018
Advances in Modelling and Control for Power Systems of the Future

Scott Moura | UC Berkeley Control of Distributed Energy Resources: PDEs and Hopfield Methods 6 September, 2018 | Slide 1



Tianyu
HU

Sangjae
BAE

Laurel 
DUNN

Saehong
PARK

Dong
ZHANG

Bertrand
TRAVACCA

Dr. Hector 
PEREZ

Zhe
ZHOU

Zach
GIMA

Dr. Hongcai
ZHANG

Ramon
CRESPO

Mathilde 
BADOUAL

Dylan 
KATO

Teng
ZENG

Dr. Milad
MEMARZADEH

Tianyu
YANG

Patrick 
KEYANTUO

Aaron 
KANDEL

Yiqi
ZHAO

Soomin
WOO

Pierre-François 
MASSIANI

Emily 
YOU

Victoria 
CHENG

Armando 
DOMINGOS

Scott Moura | UC Berkeley Control of Distributed Energy Resources: PDEs and Hopfield Methods 6 September, 2018 | Slide 2



Optimization
Dynamic	Systems	

&	Control Data	Science

Battery	Management	
Systems

Automated,	Connected,	&	
Electric	Vehicles

Distributed	Energy	
Resources

Scott Moura | UC Berkeley Control of Distributed Energy Resources: PDEs and Hopfield Methods 6 September, 2018 | Slide 3



Scott Moura | UC Berkeley Control of Distributed Energy Resources: PDEs and Hopfield Methods 6 September, 2018 | Slide 4



Source: C. Vlahoplus, G. Litra, P. Quinlan, C. Becker, “Revising the California Duck Curve: An Exploration of Its Existence,

Impact, and Migration Potential,” Scott Madden, Inc., Oct 2016.

Scott Moura | UC Berkeley Control of Distributed Energy Resources: PDEs and Hopfield Methods 6 September, 2018 | Slide 4



Aggregate Flexible Loads into Virtual Power Plant
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Modeling Thermostatically Controlled Loads (TCLs)
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Modeling Aggregated TCLs

Main Idea: Convert > 103 ODEs into two coupled linear PDEs (Malhamé and Chong, 1985)

Flux of TCLs in HEAT state:
#TCLs / sec ψ(T, t) = v(T, t)

dT

dt
(t) =

1

RC
[T∞ − T(t)] v(T, t)

Control volume:

∂v

∂t
(T, t) = lim

δT→0

[
ψ(T + δT, t)− ψ(T, t)

δT

]
=
∂ψ

∂T
(T, t)

= − 1

RC
[T∞ − T(t)]

∂v

∂T
(T, t) +

1

RC
v(T, t)
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PDE Model of Aggregated TCLs
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ut(T, t)= αλ(T)uT(T, t) + αu(T, t)

vt(T, t)= −αµ(T)vT(T, t) + αv(T, t)

u(Tmax, t) = q1v(Tmax, t)

v(Tmin, t) = q2u(Tmin, t)
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PDE Model of Aggregated TCLs
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Model Comparison
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S. J. Moura, J. Bendsten, V. Ruiz, “Parameter Identification of Aggregated Thermostatically Controlled Loads for Smart Grids using PDE
Techniques,” International Journal of Control, 2014 (Invited Paper) DOI: 10.1080/00207179.2014.915083.
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Feedback Control System
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State Estimation

Question:

Given low-bandwidth communication, can we estimate
the states of the TCL population in real-time?
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PDE State Estimator

Heterogeneous PDE Model: (u, v)

ut(x, t) = αλ(x)ux + αu + βuxx

ux(0, t) = −vx(0, t)

u(1, t) = q1v(1, t)

vt(x, t) = −αµ(x)vx + αv + βvxx

v(0, t) = q2u(0, t)

vx(1, t) = −ux(1, t)

Measurements? Send signal only when switching ON/OFF

u(0, t), v(1, t)

ux(1, t), vx(0, t)
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PDE State Estimator

Estimator: (û, v̂)

ût(x, t) = αλ(x)ûx + αû + βûxx+p1(x) [u(0, t)− û(0, t)]

ûx(0, t) = −vx(0, t) + p10 [u(0, t)− û(0, t)]

û(1, t) = q1v(1, t)

v̂t(x, t) = −αµ(x)v̂x + αv̂ + βv̂xx+p2(x) [v(1, t)− v̂(1, t)]

v̂(0, t) = q2u(0, t)

v̂x(1, t) = −ux(1, t)+p20 [v(1, t)− v̂(1, t)]
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PDE State Estimator

Estimation Error Dynamics: (ũ, ṽ) = (u− û, v− v̂)

ũt(x, t) = αλ(x)ũx + αũ + βũxx − p1(x)ũ(0, t)

ũx(0, t) = −p10ũ(0, t)

ũ(1, t) = 0

ṽt(x, t) = −αµ(x)ṽx + αṽ + βṽxx − p2(x)ṽ(1, t)

ṽ(0, t) = 0

ṽx(1, t) = −p20ṽ(1, t)

Goal: Design estimation gains:

p1(x),p2(x) : (0,1)→ R
p10,p20 ∈ R

such that (ũ, ṽ) = (0,0) is exponentially stable
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Observer Gains
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Simulations
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Simulations
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S. J. Moura, J. Bendsten, V. Ruiz, “Observer Design for Boundary Coupled PDEs: Application to Thermostatically Controlled Loads in Smart
Grids,” IEEE Conf. on Decision and Control, Florence, Italy, 2013.
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Feedback Control System
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Parameter Identification

Question:

Can we learn uncertain model parameters online?
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Parameter Identification

Uncertain parameters

ut(x, t) = αλ(x)ux + αu + βuxx vt(x, t) = −αµ(x)vx + αv + βvxx

ux(0, t) = −vx(0, t) v(0, t) = q2u(0, t)

u(1, t) = q1v(1, t) vx(1, t) = −ux(1, t)

P(t) =
P

η

∫ 1

0
u(x, t)dx

Assumptions:
1 Aggregate Power P(t) is measured
2 No. of TCLs switching u(0, t),u(1, t),ux(0, t),ux(1, t) is measured

Approach:
1 Form linear-in-the-parameters regression model
2 Use filters to avoid differentiation
3 Apply recursive least squares
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Simulations: Params ID’ed from 1,000 heterogeneous TCLs
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S. J. Moura, V. Ruiz, J. Bendsten, “Modeling Heterogeneous Populations of Thermostatically Controlled Loads
using Diffusion-Advection PDEs,” ASME Dynamic Systems and Control Conference, Stanford, CA, 2013.
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Feedback Control System
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Feedback Control

Question:

Great! We can monitor DER populations well. What about control?
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Set-point / Deadband Control

TL THTsp
u1 u2

T

TL THTsp
u1 u2

z1b(T,t) z1c(T,t)

z0a(T,t) z0b(T,t)

z1j
t (T, t) = αλ(T)z1j

T (T, t) + αz1j(T, t), j ∈ {b, c}
z0j

t (T, t) = −αµ(T)z0j
T (T, t) + αz0j(T, t), j ∈ {a,b}

with boundary conditions

z0a(TL, t) = 0, z0b(u1, t) =z0a(u1, t) + z1b(u1, t),

z1b(u2, t) = z1c(u2, t) + z0b(u2, t), z1c(TH, t) =0
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Aggregate Power Control
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Aggregate Power Control

A. Ghaffari, S. J. Moura, M. Krstic, “Analytic Modeling and Integral Control of Heterogeneous Thermostatically Controlled Load Populations,”
ASME Dynamic Systems and Control Conference, San Antonio, TX, 2014.
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UC San Diego Campus: A Living Laboratory
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UC San Diego Campus: A Living Laboratory

Goal: DR for Bldg Energy Mgmt

1 Deploy wireless sensor network
2 Model/estimator verification
3 Control design
4 Campus implementation

Sensor Nodes (Temp & Humidity)
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UCSD Office Temperature Data

Temperature variation of over six weeks. Peak temperature happens at midnight!?
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UCSD Office Temperature Data

HVAC system is time scheduled. ON | OFF
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UCSD Office TCL Simulation - Existing Open Loop Control
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Closed loop Control : 13% energy reduction
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Hierarchical Control

AjA1 AN

Centralized PDE Control

(Distributed) Optimization
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PEV Charge Schedule Optimization is a MIP!
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Problem Statement

Consider a mixed integer nonlinear program (MINLP):

minimize f(x) (1)

subject to: gj(x) ≤ 0, j = 1, · · · ,m (2)

xi ∈ {0,1}, i = 1, · · · ,p < n (3)

0 ≤ xi ≤ 1, i = p + 1, · · · ,n (4)

x ∈ Rn is the optimization variable
the first p < n variables must be binary
f(·) : Rn → R is quadratic and Lf – smooth
gj(·) : Rn → R are quadratic and Lj – smooth

Challenge

Solve LARGE-SCALE MINLPs, e.g. n = 103,104,105, · · ·

P vs NP – Millenium Prize Problem
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Existing Convex Relaxation Methods

1 Binary relaxation
2 Lagrangian relaxation
3 Semi-definite relaxation

Stochastic approach to recover integer constraint:

Let xr be solution to binary relaxation. Feasible x can be drawn
randomly from {0,1} following Bernoulli distribution B(xr).

This can be sub-optimal.

Example

minimizex∈{0,1}

(
x− 1

4

)2

=
1

16
(x? = 0 is the optimal solution)

If we apply binary relaxation, we get xr = 1
4 and

Ex∼B(xr)

(
x− 1

4

)2
= 3

16 >
1
16 !
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A short history of Hopfield Networks

(1982) J. J. Hopfield used neural nets to
model collaborative computations

(1985) J. J. Hopfield showed that neural
nets can be used to solve optimization
problems

(1990’s) Hopfield methods became very
popular for solving MIQPs in power
systems optimization

In literature, power system engineers
admit they didn’t fully understand why
Hopfield methods work well.
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The Hopfield Method

Consider MINLP

minimize f(x) (5)

subject to: xi ∈ {0,1}, i = 1, · · · ,p < n (6)

0 ≤ xi ≤ 1, i = p + 1, · · · ,n (7)

Hopfield method follows dynamics:

d

dt
xH(t) = −∇f(x(t)); xH(0) = x(0) ∈ (0,1)n (8)

x(t) = σ(xH(t)) (9)

where σ(·) : Rn → [0,1]n is an “activiation function” defined element-wise as:

σ(x) : x 7→ [σ1(x1), · · · , σn(xn)]
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What is activation function σ(x)?

strictly increasing

σ(·) ∈ C1 with Lipschitz constant Lσi

Example: tanh

σi(x) = 1
2 tanh(βi(x− 1

2 )) + 1
2 ; βi > 0

“soft projection operator” from R to {0,1}
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Nonlinear Gradient Descent

If σ(·) is a homeomorphism, then we see a nonlinear gradient descent:

d

dt
x(t) = −σ′(σ−1(x(t)))�∇f(x(t)) (10)

exp tanh sin pwl
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Discretize time dynamics

Forward Euler time discretization of Hopfield dynamics:

xk+1
H = xk

H − αk∇f(xk); x0
H = x0 ∈ (0,1)n (11)

xk = σ(xk
H) (12)

For quadratic f(x) = 1
2xTQx

xk+1
H = xk

H − αkQxk; x0
H = x0 ∈ (0,1)n (13)

xk = σ(xk
H) (14)
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Graphical Interpretation of Hopfield Method
Forward Simulation of Hopfield Neural Net!

Undirected weighted graph

n nodes, one for each xi

Each node has internal (xH,i ∈ R)
and external (xi ∈ R) states

Weights [P0]ij are elements of
gradients of obj fcn
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Hopfield vs Projected Gradient Descent

Hopfield

xk+1
H = xk

H − αk∇f(xk) (15)

xk = σ(xk
H) (16)

Projected Gradient Descent

xk+1
H = xk − αk∇f(xk) (17)

xk = Proj[0,1](x
k
H) (18)
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Simple Comparison

minimizex1,x2 (x1 − 1.5)2 + (x2 − 0.5)2 (19)

subject to: x1 ∈ {0,1} (20)

0 ≤ x2 ≤ 1 (21)
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Continuous Improvement to a Fixed Point

Theorem: Continuous Improvement

The Hopfield method yields f(xk+1) ≤ f(xk), ∀ k for an appropriate step size αk. Specifically, the
incremental improvement is bounded by:

0 ≤ f(xk)− f(xk+1) ≤ 0.5αk · ∇f(xk)TΣk∇f(xk)

Corollary: Convergence to a fixed point (may not be minimizer)

There exists a f † such that f(xk)→ f † as k →∞, and xk converges to the (non-empty) set

X =

{
x ∈ [0,1]n |xi ∈ {0,1}, i = 1, · · · ,p ∨ ∂

∂xi
f(xk) = 0

}
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Convergence Rates

Two convergence rate results, depending on structure of obj. fcn. f(x)

Theorem: Sub-linear convergence in general

If f(x) is convex and σ(·) is smooth, then

f(xk)− f †0 = O
(

1
kt

)
, with 0 < r < 1

To achieve precision ε, the worst case number of iterations is 2Mn/(β2ε)

Remark: Slower than gradient descent, for which convergence is guaranteed at a rate O
(

1
k

)
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Dual Hopfield Method

So far, we have considered Hopfield methods to approximately solve

minimize f(x) (22)

subject to: 0 ≤ xi ≤ 1 i = 1, · · · ,n (23)

xi ∈ {0,1} i = 1, · · · ,p < n (24)

We now consider inequality constraints:

minimize f(x) (25)

subject to: gj(x) ≤ 0, j = 1, · · · ,m (26)

0 ≤ xi ≤ 1 i = 1, · · · ,n (27)

xi ∈ {0,1} i = 1, · · · ,p < n (28)
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Dual Hopfield Method
Apply Lagrangian relaxation

Idea: Instead of considering the “full” Lagrangian relaxation, consider

L(x, µ) = f(x) +
m∑

j=1

µjgj(x) (29)

Then the dual function is

D(µ) = min
x

L(x, µ) = f(x) +
m∑

j=1

µjgj(x) (30)

subject to: 0 ≤ xi ≤ 1 i = 1, · · · ,n (31)

xi ∈ {0,1} i = 1, · · · ,p < n (32)

which is amenable to Hopfield method, given µ.
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Dual Ascent via Hopfield

Then solve the Dual Problem:

max
µ≥0

D(µ) (33)

D(µ) = min
x

L(x, µ) = min
x

f(x) +
m∑

j=1

µjgj(x) (34)

Run Hopfield method to approximately solve D(µ) = minx L(x, µ).

Suppose x?(µ) = arg minx L(x, µ).

The subgradient of D(µ) along dimension j: gj(x?(µ)) ∈ ∂jD(µ)
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Dual Hopfield Method
The Algorithm

Algorithm 1 Dual (sub)-gradient Ascent via Hopfield Method

Initialize λ0 ≥ 0; Choose β > 0
for k = 0,1, · · · , kmax

... (1) use Hopfield method to approximately compute dual function

... for ` = 0, · · · , `max

... ... x`+1
H = x`H − α`∇xL(x`, µk)

... ... x` = σ(x`+1
H )

... ... xk
hop ← x`

... until stopping criterion is met

... (2) update dual variable µ via (sub)-gradient ascent

... µk+1 = µk + βk
∑m

j=1 gj(xk
hop(µk))

end for
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Examples: Random MIQPs

Consider solving MIQP w.r.t. x ∈ Rn

minimize
1

2
xTQx + RTx (35)

subject to: Ax ≤ b (36)

Aeqx = beq (37)

lb ≤ x ≤ ub (38)

xi ∈ {0,1}, i = 1, · · · ,p (39)

Randomly generated parameters Q,R,A,b,Aeq,beq, lb,ub for each n

Number of constraints also randomized
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Comparative Analysis

All problems solved on Matlab:

CPLEX MIQP: using function cplexmiqp
developed by IBM

Binary Relaxation via CPLEX QP : using
function cplexqp

Semi-definite relaxation (SDR):
corresponding SDP solved using CVX

Hopfield: Dual Ascent Hopfield Method
uses dual variables from cplexqp

For each method, we compute:

computer running time [sec]

constraint violations (CV):
binary CV: 1

p

∑p
i=1 d(xi, {0,1})

inequality CV: 1
m

∑m
j=1 |[Ax− b]j|

equality CV: 1
`

∑`
k=1 |[Aeqx− beq]k|

objective function value
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Comparative Analysis
Computer running time
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SUMMARY:

Aggregate Modeling, Estimation, Identification, and Control with PDEs

Hopfield Methods for MINLPs – An efficient heuristic with provable convergence

VISIT US!

Energy, Controls, and Applications Lab (eCAL)

ecal.berkeley.edu

smoura@berkeley.edu
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APPENDIX SLIDES
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Existing Methods
Convex Relaxation #1: Binary Relaxation

Stochastic approach to recover integer constraint:

Let xr be solution to binary relaxation. Feasible x can be drawn randomly from {0,1} following
Bernoulli distribution B(xr).

This can be sub-optimal.

Example

minimizex∈{0,1}

(
x− 1

4

)2

=
1

16
(x? = 0 is the optimal solution)

If we apply binary relaxation, we get xr = 1
4 and Ex∼B(xr)

(
x− 1

4

)2
= 3

16 >
1

16 !

Other ideas:

Branch & Bound, Branch & Cut
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Existing Methods
Convex Relaxation #2: Lagrangian Relaxation

Notice that xi ∈ {0,1} is equivalent to satisfying xi(1− xi) = 0

minimize f(x) (40)

subject to: gj(x) ≤ 0, j = 1, · · · ,m (41)

0 ≤ x ≤ 1 (42)

xi(1− xi) = 0, i = 1, · · · ,p < n (43)

Form the Lagrangian:

L(x, µ, µ, µ, λ) = f(x) +
m∑

j=1

[
µjgj(x) + µ

j
xi + µj(1− xi)

]
+

p∑
i=1

λixi(1− xi) (44)

Define the (concave) dual function of Λ = [µ, µ, µ, λ]

D(Λ) = min
x∈Rn

L(x, µ, µ, µ, λ) (45)

Weak duality approach: Solve convex program maxΛ D(Λ)
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Existing Methods
Convex Relaxation #3: Semi-definite Relaxation

Introduce new variable X = xxT . This is called “lifting”. Can re-write MIQCQP

minimize
1

2
Tr(QX) + RTx + S (46)

subject to:
1

2
Tr(QjX) + RT

j x + Sj ≤ 0, j = 1, · · · ,m (47)

0 ≤ x ≤ 1 (48)

Xii = xi, i = 1, · · · ,p < n (49)

X = xxT (50)

If Q,Qi are positive semi-definite, then only X = xxT makes this non-convex. Relax into convex
inequality X � xxT . Using Schur complement:

X � xxT ⇔
[

X x
x 1

]
� 0 (51)

This can be cast as a semi-definite program (SDP).
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