Control of Distributed Energy Resources: PDEs and Hopfield Methods

Scott Moura

Assistant Professor | eCAL Director University of California, Berkeley

caesars2018

Advances in Modelling and Control for Power Systems of the Future

Scott Moura | UC Berkeley

Control of Distributed Energy Resources: PDEs and Hopfield Methoc

6 September, 2018 | Slide 2

Scott Moura | UC Berkeley

Control of Distributed Energy Resources: PDEs and Hopfield Methoc

6 September, 2018 | Slide 3

The duck curve shows steep ramping needs and overgeneration risk

Net load - March 31

Figure 2: Lowest March Daytime Net Load, 2011–2016

Source: C. Vlahoplus, G. Litra, P. Quinlan, C. Becker, "Revising the California Duck Curve: An Exploration of Its Existence, Impact, and Migration Potential," *Scott Madden, Inc.*, Oct 2016.

Aggregate Flexible Loads into Virtual Power Plant

• Chen, Hashmi, Mathias, Busic, Meyn (2018)

Modeling Thermostatically Controlled Loads (TCLs)

Main Idea: Convert $> 10^3$ ODEs into two coupled linear PDEs (Malhamé and Chong, 1985)

Main Idea: Convert $> 10^3$ ODEs into two coupled linear PDEs (Malhamé and Chong, 1985)

 $\begin{array}{c|c} u(T,t) & \# \text{ TCLs / }^{\circ}\text{C, in COOL state, @ temp } T, \text{ time } t \\ v(T,t) & \# \text{ TCLs / }^{\circ}\text{C, in HEAT state, @ temp } T, \text{ time } t \end{array}$

Main Idea: Convert $> 10^3$ ODEs into two coupled linear PDEs (Malhamé and Chong, 1985)

u(T,t) # TCLs / °C, in COOL state, @ temp T, time t v(T,t) # TCLs / °C, in HEAT state, @ temp T, time t

Flux of TCLs in HEAT state: #TCLs / sec

$$\psi(T,t) = v(T,t) \frac{dT}{dt}(t) = \frac{1}{RC} [T_{\infty} - T(t)] v(T,t)$$

Control volume:

$$\psi(T,t) \underbrace{\underbrace{\overset{v(T,t)}{\overbrace{}}}_{T} \psi(t,T+\delta T)}_{T} \psi(t,T+\delta T)$$

Main Idea: Convert $> 10^3$ ODEs into two coupled linear PDEs (Malhamé and Chong, 1985)

u(T,t) # TCLs / °C, in COOL state, @ temp T, time t v(T,t) # TCLs / °C, in HEAT state, @ temp T, time t

Flux of TCLs in HEAT state: #TCLs / sec

$$\psi(T,t) = v(T,t) \frac{dT}{dt}(t) = \frac{1}{RC} \left[T_{\infty} - T(t)\right] v(T,t)$$

Control volume:

$$\psi(T,t) = \frac{\psi(T,t)}{T} \psi(t,T+\delta T)$$

$$\begin{aligned} \frac{\partial \mathbf{v}}{\partial t}(T,t) &= \lim_{\delta T \to 0} \left[\frac{\psi(T+\delta T,t) - \psi(T,t)}{\delta T} \right] \\ &= \frac{\partial \psi}{\partial T}(T,t) \\ &= -\frac{1}{BC} \left[T_{\infty} - T(t) \right] \frac{\partial \mathbf{v}}{\partial T}(T,t) + \frac{1}{BC} \mathbf{v}(T,t) \end{aligned}$$

PDE Model of Aggregated TCLs

PDE Model of Aggregated TCLs

PDE Model of Aggregated TCLs

Model Comparison

S. J. Moura, J. Bendsten, V. Ruiz, "Parameter Identification of Aggregated Thermostatically Controlled Loads for Smart Grids using PDE Techniques," International Journal of Control, 2014 (Invited Paper) DOI: 10.1080/00207179.2014.915083.

Feedback Control System

Question:

Given low-bandwidth communication, can we estimate the states of the TCL population in real-time?

PDE State Estimator

Heterogeneous PDE Model: (u, v)

$$u_t(x,t) = \alpha \lambda(x)u_x + \alpha u + \beta u_{xx}$$

$$u_x(0,t) = -v_x(0,t)$$

$$u(1,t) = q_1v(1,t)$$

$$\begin{aligned} \mathbf{v}_t(\mathbf{x},t) &= -\alpha \mu(\mathbf{x}) \mathbf{v}_{\mathbf{x}} + \alpha \mathbf{v} + \beta \mathbf{v}_{\mathbf{x}} \\ \mathbf{v}(\mathbf{0},t) &= q_2 u(\mathbf{0},t) \\ \mathbf{v}_x(\mathbf{1},t) &= -u_x(\mathbf{1},t) \end{aligned}$$

Measurements? Send signal only when switching ON/OFF

- u(0,t), v(1,t)
- $u_x(1,t), v_x(0,t)$

PDE State Estimator

Estimator: (\hat{u}, \hat{v})

$$\hat{u}_t(x,t) = \alpha \lambda(x) \hat{u}_x + \alpha \hat{u} + \beta \hat{u}_{xx} + p_1(x) [u(0,t) - \hat{u}(0,t)] \hat{u}_x(0,t) = -v_x(0,t) + p_{10} [u(0,t) - \hat{u}(0,t)] \hat{u}(1,t) = q_1 v(1,t)$$

$$\begin{aligned} \hat{v}_t(x,t) &= -\alpha \mu(x) \hat{v}_x + \alpha \hat{v} + \beta \hat{v}_{xx} + p_2(x) \left[v(1,t) - \hat{v}(1,t) \right] \\ \hat{v}(0,t) &= q_2 u(0,t) \\ \hat{v}_x(1,t) &= -u_x(1,t) + p_{20} \left[v(1,t) - \hat{v}(1,t) \right] \end{aligned}$$

PDE State Estimator

Estimation Error Dynamics: $(\tilde{u}, \tilde{v}) = (u - \hat{u}, v - \hat{v})$

$$\begin{split} \tilde{u}_t(x,t) &= \alpha \lambda(x) \tilde{u}_x + \alpha \tilde{u} + \beta \tilde{u}_{xx} - p_1(x) \tilde{u}(0,t) \\ \tilde{u}_x(0,t) &= -p_{10} \tilde{u}(0,t) \\ \tilde{u}(1,t) &= 0 \end{split}$$

$$\begin{split} \tilde{v}_t(x,t) &= -\alpha \mu(x) \tilde{v}_x + \alpha \tilde{v} + \beta \tilde{v}_{xx} - p_2(x) \tilde{v}(1,t) \\ \tilde{v}(0,t) &= 0 \\ \tilde{v}_x(1,t) &= -p_{20} \tilde{v}(1,t) \end{split}$$

Goal: Design estimation gains:

- $p_1(x), p_2(x): (0,1) \rightarrow \mathbb{R}$
- $p_{10}, p_{20} \in \mathbb{R}$

such that $(\tilde{u}, \tilde{v}) = (0, 0)$ is exponentially stable

Simulations

Simulations

S. J. Moura, J. Bendsten, V. Ruiz, "Observer Design for Boundary Coupled PDEs: Application to Thermostatically Controlled Loads in Smart Grids," IEEE Conf. on Decision and Control, Florence, Italy, 2013.

Scott Moura | UC Berkeley

Feedback Control System

Question:

Can we learn uncertain model parameters online?

Parameter Identification

Uncertain parameters

$$u_t(x,t) = \alpha \lambda(x)u_x + \alpha u + \beta u_{xx}$$
$$u_x(0,t) = -v_x(0,t)$$
$$u(1,t) = q_1 v(1,t)$$

$$egin{aligned} & v_t(x,t) = -lpha \mu(x) v_x + lpha v + eta v_{xx} \ & v(0,t) = q_2 u(0,t) \ & v_x(1,t) = -u_x(1,t) \end{aligned}$$

$$P(t) = rac{\overline{P}}{\eta} \int_0^1 u(x,t) dx$$

Assumptions:

- Aggregate Power P(t) is measured
- **2** No. of TCLs switching $u(0,t), u(1,t), u_x(0,t), u_x(1,t)$ is measured

Approach:

- Form linear-in-the-parameters regression model
- Use filters to avoid differentiation
- Apply recursive least squares

Simulations: Params ID'ed from 1,000 heterogeneous TCLs

S. J. Moura, V. Ruiz, J. Bendsten, "Modeling Heterogeneous Populations of Thermostatically Controlled Loads using Diffusion-Advection PDEs," ASME Dynamic Systems and Control Conference, Stanford, CA, 2013.

Scott Moura | UC Berkeley

Control of Distributed Energy Resources: PDEs and Hopfield Methoc

Feedback Control System

Question:

Great! We can monitor DER populations well. What about control?

Set-point / Deadband Control

with boundary conditions

Scott Moura | UC Berkeley

Aggregate Power Control

Aggregate Power Control

A. Ghaffari, S. J. Moura, M. Krstic, "Analytic Modeling and Integral Control of Heterogeneous Thermostatically Controlled Load Populations," ASME Dynamic Systems and Control Conference, San Antonio, TX, 2014.

UC San Diego Campus: A Living Laboratory

UC San Diego Campus: A Living Laboratory

Goal: DR for Bldg Energy Mgmt

- Deploy wireless sensor network
- Odel/estimator verification
- Control design
- Campus implementation

Sensor Nodes (Temp & Humidity)

UCSD Office Temperature Data

Temperature variation of over six weeks. Peak temperature happens at midnight!?
UCSD Office Temperature Data

HVAC system is time scheduled. ON | OFF

UCSD Office TCL Simulation - Existing Open Loop Control

Scott Moura | UC Berkeley

Control of Distributed Energy Resources: PDEs and Hopfield Method

Closed loop Control : 13% energy reduction

Scott Moura | UC Berkeley

Control of Distributed Energy Resources: PDEs and Hopfield Method

PEV Charge Schedule Optimization is a MIP!

eMotorWerks' Juicebox

Control \in on (40 A) or off (0 A)

UC Berkeley Smart EV Charger

Richmond Field Station

Control $\in \{0 A\} \cup [12 A, 30 A]$

Problem Statement

Consider a mixed integer nonlinear program (MINLP):

ninimize	$f(\mathbf{x})$	()	L
----------	-----------------	----	---

subject to: $g_i(\mathbf{x}) \leq 0, \quad j = 1, \cdots, m$ (2)

$$\mathbf{x}_i \in \{\mathbf{0}, \mathbf{1}\}, \quad i = \mathbf{1}, \cdots, p < n$$
 (3)

$$0 \leq \mathbf{x}_i \leq 1, \quad i = p + 1, \cdots, n \tag{4}$$

 $\mathbf{x} \in \mathbb{R}^n$ is the optimization variable the first p < n variables must be binary $f(\cdot): \mathbb{R}^n \to \mathbb{R}$ is quadratic and L_f – smooth $g_i(\cdot): \mathbb{R}^n \to \mathbb{R}$ are quadratic and L_i – smooth

Problem Statement

Consider a mixed integer nonlinear program (MINLP):

minimize	$f(\mathbf{x})$		(1
----------	-----------------	--	----

subject to: $g_i(\mathbf{x}) \leq 0, \quad i = 1, \cdots, m$ (2)

$$x_i \in \{0, 1\}, i = 1, \cdots, p < n$$
 (3)

$$0 \leq \mathbf{x}_i \leq \mathbf{1}, \quad i = p + 1, \cdots, n \tag{4}$$

 $\mathbf{x} \in \mathbb{R}^n$ is the optimization variable the first p < n variables must be binary $f(\cdot): \mathbb{R}^n \to \mathbb{R}$ is quadratic and L_f – smooth $g_i(\cdot): \mathbb{R}^n \to \mathbb{R}$ are quadratic and L_i – smooth

Challenge

Solve **LARGE-SCALE** MINLPs, e.g. $n = 10^{3}, 10^{4}, 10^{5}, \cdots$

P vs NP – Millenium Prize Problem

Existing Convex Relaxation Methods

Binary relaxation

- 2 Lagrangian relaxation
- Semi-definite relaxation

Binary relaxation

Stochastic approach to recover integer constraint:

Lagrangian relaxation

Semi-definite relaxation Let x^r be solution to binary relaxation. Feasible x can be drawn randomly from $\{0, 1\}$ following Bernoulli distribution $\mathcal{B}(x^r)$.

This can be sub-optimal.

Example

minimize
$$_{x \in \{0,1\}} \left(x - \frac{1}{4}\right)^2 = \frac{1}{16}$$
 ($x^* = 0$ is the optimal solution)

If we apply binary relaxation, we get $x^r = \frac{1}{4}$ and $\mathbb{E}_{x \sim \mathcal{B}(x^r)} \left(x - \frac{1}{4}\right)^2 = \frac{3}{16} > \frac{1}{16}$!

A short history of Hopfield Networks

- (1982) J. J. Hopfield used neural nets to model collaborative computations
- (1985) J. J. Hopfield showed that neural nets can be used to solve optimization problems
- (1990's) Hopfield methods became very popular for solving MIQPs in power systems optimization
- In literature, power system engineers admit they didn't fully understand why Hopfield methods work well.

The Hopfield Method

Consider MINLP

minimize	$f(\mathbf{x})$		(5
subject to:	$\textbf{x_i} \in \{\textbf{0},\textbf{1}\},$	$i = 1, \cdots, p < n$	(6
	$0 \leq \mathbf{x}_i \leq 1,$	$i = p + 1, \cdots, n$	(7

Consider MINLP

minimize
$$f(x)$$
 (5)

subject to:
$$x_i \in \{0, 1\}, \quad i = 1, \cdots, p < n$$
 (6)

$$0 \leq x_i \leq 1, \quad i = p + 1, \cdots, n \tag{7}$$

Hopfield method follows dynamics:

$$\frac{d}{dt}x_{H}(t) = -\nabla f(x(t)); \quad x_{H}(0) = x(0) \in (0,1)^{n}$$
(8)
$$x(t) = \sigma(x_{H}(t))$$
(9)

where $\sigma(\cdot) : \mathbb{R}^n \to [0, 1]^n$ is an "activiation function" defined element-wise as:

 $\sigma(\mathbf{x}): \mathbf{x} \mapsto [\sigma_1(\mathbf{x}_1), \cdots, \sigma_n(\mathbf{x}_n)]$

What is activation function $\sigma(x)$?

- strictly increasing
- $\sigma(\cdot) \in \mathbb{C}^1$ with Lipschitz constant L_{σ_i}

Example: tanh

$$\sigma_i(x) = \frac{1}{2} \tanh(\beta_i(x-\frac{1}{2})) + \frac{1}{2}; \qquad \beta_i > 0$$

"soft projection operator" from \mathbb{R} to $\{0,1\}$

Nonlinear Gradient Descent

If $\sigma(\cdot)$ is a homeomorphism, then we see a nonlinear gradient descent:

$$\frac{d}{dt}\mathbf{x}(t) = -\sigma'(\sigma^{-1}(\mathbf{x}(t))) \odot \nabla f(\mathbf{x}(t))$$
(10)

Nonlinear Gradient Descent

If $\sigma(\cdot)$ is a homeomorphism, then we see a nonlinear gradient descent:

$$\frac{d}{dt}x(t) = -\sigma'(\sigma^{-1}(x(t))) \odot \nabla f(x(t))$$
(10)

Scott Moura | UC Berkeley

Control of Distributed Energy Resources: PDEs and Hopfield Methoc

Forward Euler time discretization of Hopfield dynamics:

$$\begin{aligned} x_{H}^{k+1} &= x_{H}^{k} - \alpha^{k} \nabla f(x^{k}); \qquad x_{H}^{0} = x^{0} \in (0,1)^{n} \\ x^{k} &= \sigma(x_{H}^{k}) \end{aligned} \tag{11}$$

Forward Euler time discretization of Hopfield dynamics:

$$\begin{aligned} x_{H}^{k+1} &= x_{H}^{k} - \alpha^{k} \nabla f(x^{k}); \qquad x_{H}^{0} = x^{0} \in (0,1)^{n} \\ x^{k} &= \sigma(x_{H}^{k}) \end{aligned} \tag{11}$$

For quadratic $f(x) = \frac{1}{2} x^T Q x$

$$\begin{aligned} x_{H}^{k+1} &= x_{H}^{k} - \alpha^{k} Q x^{k}; \qquad x_{H}^{0} &= x^{0} \in (0, 1)^{n} \\ x^{k} &= \sigma(x_{H}^{k}) \end{aligned} \tag{13}$$

Graphical Interpretation of Hopfield Method

Forward Simulation of Hopfield Neural Net!

- Undirected weighted graph
- *n* nodes, one for each *x_i*
- Each node has internal (x_{H,i} ∈ ℝ) and external (x_i ∈ R) states
- Weights [P₀]_{ij} are elements of gradients of obj fcn

Hopfield

$$\begin{aligned} \mathbf{x}_{H}^{k+1} &= \mathbf{x}_{H}^{k} - \alpha^{k} \nabla f(\mathbf{x}^{k}) \quad (15) \\ \mathbf{x}^{k} &= \sigma(\mathbf{x}_{H}^{k}) \quad (16) \end{aligned}$$

Projected Gradient Descent

$$\boldsymbol{x}_{H}^{k+1} = \boldsymbol{x}^{k} - \alpha^{k} \nabla f(\boldsymbol{x}^{k})$$
 (17)

$$x^{k} = \operatorname{Proj}_{[0,1]}(x_{H}^{k})$$
 (18)

Simple Comparison

subject to:

$$x_1 \in \{0, 1\}$$
 (20)

$$0 \le x_2 \le 1 \tag{21}$$

Scott Moura | UC Berkeley

Theorem: Continuous Improvement

The Hopfield method yields $f(x^{k+1}) \leq f(x^k)$, $\forall k$ for an appropriate step size α^k . Specifically, the incremental improvement is bounded by:

$$0 \leq f(x^k) - f(x^{k+1}) \leq 0.5 \alpha^k \cdot
abla f(x^k)^T \Sigma^k
abla f(x^k)$$

Corollary: Convergence to a fixed point (may not be minimizer)

There exists a f^{\dagger} such that $f(x^k) \to f^{\dagger}$ as $k \to \infty$, and x^k converges to the (non-empty) set

$$\mathcal{X} = \left\{ x \in [0, 1]^n \mid x_i \in \{0, 1\}, i = 1, \cdots, p \quad \lor \quad \frac{\partial}{\partial x_i} f(x^k) = 0 \right\}$$

Two convergence rate results, depending on structure of obj. fcn. f(x)

Theorem: Sub-linear convergence in general

If f(x) is convex and $\sigma(\cdot)$ is smooth, then

•
$$f(x^k) - f_0^{\dagger} = \mathcal{O}\left(\frac{1}{k^t}\right)$$
, with $0 < r < 1$

• To achieve precision ε , the worst case number of iterations is $2Mn/(\beta^2 \varepsilon)$

Remark: Slower than gradient descent, for which convergence is guaranteed at a rate $\mathcal{O}\left(\frac{1}{k}\right)$

So far, we have considered Hopfield methods to approximately solve

minimize
$$f(x)$$
 (22)

subject to:
$$0 \le x_i \le 1$$
 $i = 1, \cdots, n$ (23)

$$x_i \in \{0, 1\}$$
 $i = 1, \cdots, p < n$ (24)

So far, we have considered Hopfield methods to approximately solve

minimize
$$f(\mathbf{x})$$
 (22)

subject to:
$$0 \le x_i \le 1$$
 $i = 1, \cdots, n$ (23)

$$\mathbf{x}_i \in \{0, 1\}$$
 $i = 1, \cdots, p < n$ (24)

We now consider inequality constraints:

minimize	$f(\mathbf{x})$	(25)
----------	-----------------	------

subject to: $g_j(x) \le 0, \quad j = 1, \cdots, m$ (26) $0 \le x \le 1, \quad i = 1, \cdots, n$ (27)

$$0 \le \mathbf{x}_i \le 1 \quad i = 1, \cdots, n \tag{27}$$

$$x_i \in \{0,1\}$$
 $i = 1, \cdots, p < n$ (28)

Apply Lagrangian relaxation

Idea: Instead of considering the "full" Lagrangian relaxation, consider

$$L(x, \mu) = f(x) + \sum_{j=1}^{m} \mu_j g_j(x)$$
 (29)

Apply Lagrangian relaxation

Idea: Instead of considering the "full" Lagrangian relaxation, consider

$$L(\mathbf{x},\mu) = f(\mathbf{x}) + \sum_{j=1}^{m} \mu_j g_j(\mathbf{x})$$
(29)

Then the dual function is

$$D(\mu) = \min_{x} \qquad L(x,\mu) = f(x) + \sum_{j=1}^{m} \mu_j g_j(x)$$
 (30)

subject to:
$$0 \le x_i \le 1$$
 $i = 1, \cdots, n$ (31)

$$x_i \in \{0, 1\}$$
 $i = 1, \cdots, p < n$ (32)

which is amenable to Hopfield method, given μ .

Then solve the Dual Problem:

$$\max_{\mu \ge 0} D(\mu)$$
(33)
$$D(\mu) = \min_{x} L(x, \mu) = \min_{x} f(x) + \sum_{j=1}^{m} \mu_{j} g_{j}(x)$$
(34)

Then solve the Dual Problem:

$$\max_{\mu \ge 0} D(\mu)$$
(33)
$$D(\mu) = \min_{x} L(x, \mu) = \min_{x} f(x) + \sum_{j=1}^{m} \mu_{j} g_{j}(x)$$
(34)

Run Hopfield method to approximately solve $D(\mu) = \min_{x} L(x, \mu)$.

Suppose $x^*(\mu) = \arg \min_x L(x, \mu)$.

The subgradient of $D(\mu)$ along dimension *j*: $g_j(x^*(\mu)) \in \partial_j D(\mu)$

The Algorithm

Algorithm 1 Dual (sub)-gradient Ascent via Hopfield Method

Initialize $\lambda^0 > 0$; Choose $\beta > 0$ for $k = 0, 1, \cdots, k_{max}$ (1) use Hopfield method to approximately compute dual function for $\ell = 0, \cdots, \ell_{max}$ $\mathbf{x}_{H}^{\ell+1} = \mathbf{x}_{H}^{\ell} - \alpha^{\ell} \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^{\ell}, \mu^{k})$ $\mathbf{x}^{\ell} = \sigma(\mathbf{x}_{H}^{\ell+1})$ $x_{hop}^k \leftarrow x^\ell$ **until** stopping criterion is met (2) update dual variable μ via (sub)-gradient ascent $\mu^{k+1} = \mu^{k} + \beta^{k} \sum_{i=1}^{m} g_{i}(x_{\text{hop}}^{k}(\mu^{k}))$ end for

Consider solving MIQP w.r.t. $x \in \mathbb{R}^n$

minimize
$$\frac{1}{2}x^TQx + R^Tx$$
 (35)

subject to:
$$Ax \le b$$
 (36)

$$A_{eq}x = b_{eq} \tag{37}$$

$$lb \le x \le ub$$
 (38)

$$x_i \in \{0, 1\}, i = 1, \cdots, p$$
 (39)

- Randomly generated parameters Q, R, A, b, A_{eq}, b_{eq}, lb, ub for each n
- Number of constraints also randomized

All problems solved on Matlab:

For each method, we compute:

- CPLEX MIQP: using function *cplexmiqp* developed by IBM
- Binary Relaxation via CPLEX QP : using function *cplexqp*
- Semi-definite relaxation (SDR): corresponding SDP solved using CVX
- Hopfield: Dual Ascent Hopfield Method uses dual variables from *cplexqp*

- computer running time [sec]
- constraint violations (CV):
 - binary CV: $\frac{1}{p} \sum_{i=1}^{p} d(x_i, \{0, 1\})$
 - inequality CV: $\frac{1}{m} \sum_{j=1}^{m} |[Ax b]_j|$
 - equality CV: $\frac{1}{\ell} \sum_{k=1}^{\ell} |[A_{eq}x b_{eq}]_k|$
- objective function value

Comparative Analysis

Computer running time

Scott Moura | UC Berkeley

Control of Distributed Energy Resources: PDEs and Hopfield Methoc

Objective value

equality CV

SUMMARY:

- Aggregate Modeling, Estimation, Identification, and Control with PDEs
- Hopfield Methods for MINLPs An efficient heuristic with provable convergence

VISIT US!

Energy, Controls, and Applications Lab (eCAL)

ecal.berkeley.edu

smoura@berkeley.edu

APPENDIX SLIDES

Stochastic approach to recover integer constraint:

Let x^r be solution to binary relaxation. Feasible x can be drawn randomly from $\{0, 1\}$ following Bernoulli distribution $\mathcal{B}(x^r)$.

This can be sub-optimal.

Stochastic approach to recover integer constraint:

Let x^r be solution to binary relaxation. Feasible x can be drawn randomly from $\{0, 1\}$ following Bernoulli distribution $\mathcal{B}(x^r)$.

This can be sub-optimal.

Example

minimize_{$$x \in \{0,1\}$$} $\left(x - \frac{1}{4}\right)^2 = \frac{1}{16}$ ($x^* = 0$ is the optimal solution)

If we apply binary relaxation, we get $x^r = \frac{1}{4}$ and $\mathbb{E}_{x \sim \mathcal{B}(x^r)} \left(x - \frac{1}{4}\right)^2 = \frac{3}{16} > \frac{1}{16}$!

Other ideas:

• Branch & Bound, Branch & Cut

Convex Relaxation #2: Lagrangian Relaxation

Notice that $x_i \in \{0, 1\}$ is equivalent to satisfying $x_i(1 - x_i) = 0$

minimize $f(\mathbf{x})$ (40)

subject to: $g_i(\mathbf{x}) \leq 0, \quad j = 1, \cdots, m$ (41)0

$$\leq \mathbf{x} \leq 1$$
 (42)

$$x_i(1-x_i) = 0, \quad i = 1, \cdots, p < n$$
 (43)

Convex Relaxation #2: Lagrangian Relaxation

Notice that $x_i \in \{0,1\}$ is equivalent to satisfying $x_i(1-x_i) = 0$

minimize $f(\mathbf{x})$ (40)

subject to

to:
$$g_j(\mathbf{x}) \leq 0, \quad j = 1, \cdots, m$$
 (41)

$$0 \le \mathbf{x} \le 1 \tag{42}$$

$$x_i(1 - x_i) = 0, \quad i = 1, \cdots, p < n$$
 (43)

Form the Lagrangian:

$$L(\mathbf{x},\mu,\underline{\mu},\overline{\mu},\lambda) = f(\mathbf{x}) + \sum_{j=1}^{m} \left[\mu_j g_j(\mathbf{x}) + \underline{\mu}_j \mathbf{x}_i + \overline{\mu}_j (1-\mathbf{x}_i) \right] + \sum_{i=1}^{p} \lambda_i \mathbf{x}_i (1-\mathbf{x}_i)$$
(44)

Convex Relaxation #2: Lagrangian Relaxation

Notice that $x_i \in \{0,1\}$ is equivalent to satisfying $x_i(1-x_i) = 0$

minimize	$f(\mathbf{x})$	(40)
----------	-----------------	------

subject to: $g_j(x) \leq 0, \hspace{0.2cm} j = 1, \cdots, m$

$$0 \le x \le 1$$
 (42)

$$x_i(1-x_i) = 0, \quad i = 1, \cdots, p < n$$
 (43)

Form the Lagrangian:

$$L(x,\mu,\underline{\mu},\overline{\mu},\lambda) = f(x) + \sum_{j=1}^{m} \left[\mu_j g_j(x) + \underline{\mu}_j x_i + \overline{\mu}_j (1-x_i) \right] + \sum_{i=1}^{p} \lambda_i x_i (1-x_i)$$
(44)

Define the (concave) dual function of $\Lambda = [\mu, \underline{\mu}, \overline{\mu}, \lambda]$

$$D(\Lambda) = \min_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x}, \mu, \underline{\mu}, \overline{\mu}, \lambda)$$
(45)

Weak duality approach: Solve convex program $\max_{\Lambda} D(\Lambda)$

Scott Moura | UC Berkeley

(41)

Convex Relaxation #3: Semi-definite Relaxation

Introduce new variable $X = xx^{T}$. This is called "lifting". Can re-write MIQCQP

Convex Relaxation #3: Semi-definite Relaxation

Introduce new variable $X = xx^{T}$. This is called "lifting". Can re-write MIQCQP

minimize
$$\frac{1}{2} \operatorname{Tr}(QX) + R^T x + S$$
 (46)

subject to:
$$\frac{1}{2} \operatorname{Tr}(Q_j X) + R_j^T x + S_j \le 0, \quad j = 1, \cdots, m$$
 (47)
 $0 \le x \le 1$ (48)

$$\leq \mathbf{x} \leq \mathbf{1}$$
 (48)

$$\mathbf{X}_{ii} = \mathbf{x}_i, \quad i = 1, \cdots, p < n$$
 (49)

$$\boldsymbol{\zeta} = \boldsymbol{x}\boldsymbol{x}^{\mathsf{T}} \tag{50}$$

If O, O_i are positive semi-definite, then only $X = xx^{T}$ makes this non-convex.

Convex Relaxation #3: Semi-definite Relaxation

S

Introduce new variable $X = xx^{T}$. This is called "lifting". Can re-write MIQCQP

0

minimize
$$\frac{1}{2} \operatorname{Tr}(QX) + R^T x + S$$
 (46)

ubject to:
$$\frac{1}{2}\operatorname{Tr}(Q_jX) + R_j^T x + S_j \leq 0, \quad j = 1, \cdots, m$$
 (47)

$$\leq \mathbf{x} \leq \mathbf{1}$$
 (48)

$$\mathbf{X}_{ii} = \mathbf{x}_i, \quad i = 1, \cdots, p < n$$
 (49)

$$\mathbf{X} = \mathbf{X}\mathbf{X}^{\mathsf{T}} \tag{50}$$

If Q, Q_i are positive semi-definite, then only $X = xx^T$ makes this non-convex. Relax into convex inequality $X \succeq xx^T$. Using Schur complement:

$$X \succeq x x^{T} \Leftrightarrow \begin{bmatrix} X & x \\ x & 1 \end{bmatrix} \succeq 0$$
(51)

This can be cast as a semi-definite program (SDP).