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Practical context: The changing role of load management

Initial idea: Using deferrable grid electric loads, mainly
thermal loads (electric space heating, air conditioners,
refrigerators) to shave electric demand peaks and fill valleys

deferred generation and transmission system expansion,
efficiency of electricity production

Currently: Strong push for renewable sources

Intermittency
A control architecture to convert dispersed grid thermal loads
into an effective energy storage potential

Challenges: Literally millions of devices to (in theory) observe
and actuate

staggering communication load, staggering computations,
challenge to keep customers happy
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Past Approach: Homogeneous deterministic direct load control

Idea: Send the same interruption/reconnection signal to very
large numbers of homogeneous electric devices attached to
thermostatically controlled loads.

Analytical tools (statistical mechanics): Microscopic level
stochastic models under uniform control + Law of large
numbers

Ensemble statistics (PDE description)

An example (Laurent - Malhamé 1994): Elemental hybrid
state (continuous temperature, discrete thermostat)
stochastic model of water heaters with Kolmogorov equations
based wave model at the aggregate level.

Main problem: Uniform controls applied to devices in
potentially very different states.

Too careful → too conservative.
Too daring → a fraction of customers unhappy.

3 / 32



Improvements since

Higher order PDE model extensions: (Zhao, Zhang 2017)

PDE based randomized controls locally implemented (Totu,
Winieski 2017)

PDE based identification approaches (Moura, Bendsten, Ruiz
2014)

Aggregation and state estimation based control (Mathieu,
Koch, Callaway 2013)

Mean field related ideas (Meyn, Barooah, Bušić, Ehren 2013)

Mean field game based methods (Kizilkale, Malhamé 2013,
Ma, Callaway and Hiskens 2013)
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Aggregate PDE model of electric water heaters (1994)
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Implementation principles

1 Decentralization: Each controller has to be situated locally
because comfort and safety constraints can be locally secured.

2 Parsimony of communications: Communications should be
kept at minimum both with the central authority and among
users.

3 Minimal intrusiveness of controls: Deviations from
uncontrolled behavior should be minimized.
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Envisioned Overall Architecture: The case of a single central authority

Forecasts of wind
and solar generation

Mathematical
Programming

Aggregate
models of energy
storage capable devices

Energy/temperature
schedule of large
aggregates of devices

- electrical space heaters
- electrical water heaters
- etc.

Uncontrollable component
of load
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MFG = (Statistical Mechanics + Optimal Control Theory)

Linear Quadratic Mean Field Rendez-vous Problem

Ji(u
i, u−i) = E

∫ ∞
0

e−δt
{[
xit − γ

(
x̄N + η

)]2
q +

(
uit

)2

r

}
dt, 1 ≤ i ≤ N
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MFG’s: A Fast Growing Literature

Controls and PDEs:
Huang M. Y., Malhame R. P. and Caines P. E. (2006), “Large population stochastic dynamic games: closed-loop
McKean-Vlasov systems and the Nash certainty equivalence principle”. Communications in Information and
Systems. Vol. 6, No. 3, pp. 221-252.

Lasry J. M. and Lions, P. L. (2006), “Jeux à champ moyen. I-Le cas stationnaire”. Comptes Rendus
Mathematique. Vol. 343, No. 9, pp. 619-625.

Lasry J. M. and Lions, P. L. (2006), “Jeux à champ moyen. II-Horizon fini et contrôle optimal”. Comptes Rendus
Mathematique. Vol. 343, No. 10, pp. 679-684.

Huang M. Y., Caines P. E. and Malhamé R. P. (2007), “Large population cost-coupled LQG problems with
non-uniform agents: individual-mass behaviour and decentralized ε-Nash equilibria”. IEEE Tans. on Automatic
Control, Vol. 52, No. 9, pp. 1560-1571.

Books:
Bensoussan A., Frehse J., Yam P. (2013), ”Mean Field Games and Mean Field Type Control Theory” Carmona R.,

Delarue F. (2018), ”Probabilistic Theory of Mean Field Games with Applications I and II”
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Mean Field Games: The Reasons?

Two fundamental reasons:

Games are a natural device for enforcing decentralization.

The large numbers involved induce decoupling effects which
allow the law of large numbers to kick in.

Practical benefits:

The resulting control laws can be computed in an open loop
manner by individual devices thus significantly reducing
communication requirements.

Control implementation is local unlike direct control, thus
permitting local enforcement of comfort and safety
constraints.
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Non-cooperative Collective Target
Tracking Mean Field Control for

Water Heaters
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Water Heater Stratification Model

xl temperature of the lth segment
ul control action at the lth segment
ṁL fluid mass flow rate to the load

Q̇l rate of energy input by the heating element to the lth segment
xenv temperature of the environment
xL temperature of the inlet fluid
Ml mass of the fluid in the lth segment
Al lateral surface area of the lth segment
Cpf specific heat of the fluid
U loss coefficient between the tank and its environment

MlC
pf dxl,t

dt
= UAl(x

env − xl,t) + ṁLt C
pf (x(l+1),t − xl,t) + Q̇lul,t,

t ≥ 0, l 6= n

MlC
pf dxl,t

dt
= UAl(x

env − xl,t) + ṁLt C
pf (xLt − xl,t) + Q̇lul,t,

t ≥ 0, l = n

S. Klein, “A design procedure for solar heating systems,” Ph.D. dissertation, Department of Chemical Engineering,
University of Wisconsin-Madison, 1976.
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Elemental Agent Dynamics

ṁL: modeled as a (stochastic) jump process.

Physical model:

MlC
pf dxl,t

dt
= UAl(x

env − xl,t) + ṁLt C
pf (x(l+1),t − xl,t) + Q̇lul,t,

t ≥ 0, l 6= n

MlC
pf dxl,t

dt
= UAl(x

env − xl,t) + ṁLt C
pf (xLt − xl,t) + Q̇lul,t,

t ≥ 0, l = n

We write it as:

dxt
dt

= Aθtxt +But + cθt , t ≥ 0.

θt, t ≥ 0, is a continuous time Markov chain taking values in
Θ = {1, 2, ..., p} with infinitesimal generator matrix Λ. Each
discrete value is associated with a type of event (showers,
dishwashers, etc . . . )
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Sample Trajectory
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Constant Level Tracking Problem Setup
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Redefined Dynamics

Dynamics for a population of N water heaters:

dxit
dt

= A
′θitxit +Buit + c

′θit , t ≥ 0, 1 ≤ i ≤ N

The control input is redefined so that no control effort is required on
average to remain at initial temperature.

dxit
dt

= Aθ
i
txit +B(uit + ui,freet ) + cθ

i
t , t ≥ 0, 1 ≤ i ≤ N,

where

ui,freem =

n∑
l=1

UAl(x
i
l,0 − xenv) + E

p∑
j=1

ζj(t)ṁL
t (j)Cpf (x1,t − xLt )

ζ(t) = [ζ1(t), ..., ζp(t)] is the probability distribution of the Markov chain
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Integral Control Based Cost Function

Cost functions:

JNi (ui, u−i) = E
∫ T

0

[
(Hxit − z)2q

y
t + (Hxit −Hxi0)2qx0 + ‖uit‖2R

]
dt

+ (HxiT − z)2q
y
T + (HxiT −Hxi0)2qx0

xi temperature
z lower comfort bound
ui control
H [1/n, ..., 1/n]

Integral controller embedded in mean-target deviation coefficient:
qyt , t ∈ [0, T ], calculated as the following integrated error signal:

qyt =

∣∣∣∣λ ∫ t

0

(Hx̄Nτ − y)dτ

∣∣∣∣
x̄N mean temperature of the population
y mean target
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Synthesis of the Mean Field Control Law: Step 1

For a given x̄t and thus qyt , t ∈ [0, T ], compute optimal agent
response: [W. M. Wonham, 1971]

each agent Ai, 1 ≤ i ≤ N , obtains the positive solution to the
coupled set of Riccati equations

− dΠj
t

dt
= Πj

tA
j +Aj

>
Πj
t

−Πj
tBR

−1B>Πj
t +

p∑
k=1

λjk(t)Π
k
t + (qyt + qx0)H>H,

where
Πj
T = (qyT + qx0)H>H, 1 ≤ j ≤ p
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Synthesis of the Mean Field Control Law: Step 1

for a given target signal z, the individual ith agent offset
function is generated by the coupled differential equations

−
dsji,t
dt

= (Aj−BR−1B>Πj
t )
>sji,t−q

y
tH
>z−qx0H>xi0+Πj

tc
j
i

+

p∑
k=1

λjk(t)s
k
i,t,

where

sji,T = −[qyTH
>z + qx0H>xi0], 1 ≤ j ≤ p

the optimal tracking control law is given by

u◦i,t = −
p∑
j=1

I[θi,t=j]R
−1B>(Πj

txi,t + sji,t), t ≥ 0.
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Fixed Point Equation System: Step 2

Under best response to posited x̄t, agents mean must replicate x̄t.

qyt =

∣∣∣∣λ∫ t

0
(Hx̄τ − y)dτ

∣∣∣∣ ,
−
dΠjt
dt

= ΠjtA
j +Aj

>
Πjt −ΠjtBR

−1B>Πjt

+

p∑
k=1

λjkΠkt + (qyt + qx0 )H>H, ΠjT = (qyT + qx0 )H>H, 1 ≤ j ≤ p,

−
dsjt
dt

= (Aj −BR−1B>Πjt )
>sjt − q

y
tH
>z − qx0H>x̄0

+ Πjtc
j +

p∑
k=1

λjks
k
t , sjT = −[qyTH

>z + qx0H>x̄0], 1 ≤ j ≤ p,

dx̄jt
dt

= (Aj −BR−1B>Πjt )x̄
j
t +

p∑
k=1

λkj x̄
k
t + ζjt c

j − ζjtBR
−1B>sjt , 1 ≤ j ≤ p

x̄t =

p∑
j=1

x̄jt ,

dζt

dt
= ζtΛ

>.

One recalls

x̄jt = E(x̄tI[θt=j])

Λ = {λi′j′ , i′, j′ = 1, ..., p} is the infin. gen. of the MC

ζt = [ζ1
t , . . . , ζ

p
t ] is the prob. dist. of the MC
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Fixed Point Analysis

Define the set G: all func. s.t.
f ∈ Cb[0, T ], f(0) = x̄0 and
z ≤ f(t) ≤ x̄0, t ∈ [0, T ].

Lemma: Under ‖·‖∞, G is closed
in Cb[0, T ]; therefore it is a
complete metric space.

Theorem: The assumption below
guarantees the existence of a
unique fixed point for the map
M : G → G, due to the Banach
fixed point theorem.

Contraction Assumption

2b1

a1 minj

√
inf(0≤t≤T,x̄∈G)[λmin(Π

j
t )]

< 1

where

a1 = min
j

inf(0≤t≤T,x̄∈G)

[
λmin(Q

j
t + Π

j
tBR

−1B>Π
j
t )
]

sup(0≤t≤T,x̄∈G)

[
λsup(Π

j
t )
] ,

b1 = max
j

√
sup

(0≤t≤T,x̄∈G)

[
λmax(Π

j
t )
]
‖BR−1

B
>‖(γ1 + γ2 + γ3 + γ4),

γ1 = (max
j
κ
j
3λ)

[
(
√
p/nq

x0 x̄0) + (
√
p/nκ1z)

]
,

γ2 = λ
√
p/nz sup

x̄∈G

∥∥∥Ψx̄
(t, T )

∥∥∥T,
γ3 = (max

j
κ
j
2λ)(

√
p/nq

x0 x̄0)(
√
p/nκ1z)(cj sup

(0≤t≤T,x̄∈G)
[λmax(Πt)]),

γ4 = (
√
p/nz +

√
nmax

j
‖cj‖κj

2)λ

∫ t

T
sup
x̄∈G

∥∥∥Ψx̄
(t, τ)

∥∥∥ τdτ,
where

dΨx̄(t, τ)

dt
= −[G

>
+ Λ⊗ I]Ψx̄

(t, τ),

G = diag(G1, . . . , Gp), and Gj = Aj − BR−1B>Πj .
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ε-Nash Theorem

Collective Target Tracking MJ MF Stochastic Control Theorem

Under technical conditions the Collective Target Tracking MJ MF
Equations have a unique solution which induces a set of controls
UNcol , {(ui)0; 1 ≤ i ≤ N}, 1 ≤ N <∞, with

u◦t = −
p∑
j=1

I[θt=j]R
−1B>(Πj

txt + sjt ), t ≥ 0,

such that

1 all agent system trajectories xi, 1 ≤ i ≤ N, are second order stable;

2 {UNcol; 1 ≤ N <∞} yields an ε-Nash equilibrium for all ε > 0.
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Control Architecture

Controller 1

...

Controller N

w.h. 1

w.h. N

Scheduler

u1
t

uNt

x1
t

xNt

x̄0

y[0, T ]

x̄t

Figure: Control Architecture
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Simulations

200 water heaters (60 gallons): 2 stratification layers

Two elements with total maximum elemental power of 4.5kW

initial mean: 55◦C

2 experiments:

increase 2 ◦C mean temperature,
decrease 2 ◦C mean temperature,

over a 6 hours control horizon

constant water extraction rate: 0.05 l/sec

time invariant 2 state Markov chain:

arrival rate: 0.5
departure rate: 7
consequently average water consumption is 288 l/day

The central authority provides the target, local controllers
apply collective target tracking mean field
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Fixed Point Iterations
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Energy Release: Collective Target Tracking Markovian Jump MF Control
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All Agents Following the Low Comfort Level Signal
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Aggregate Power Relief Curve
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Energy Accumulation: Collective Target Tracking Markovian Jump MFC
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Aggregate Power Accumulation Curve
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Energy Accumulation: Heterogeneous Populations
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Agents Applying Collective Target Tracking Markovian Jump MF Control
First group: higher initial temperature, second group: lower initial temperature

Second group’s control penalty coefficient R is lower than the first group
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Energy Accumulation: Homogeneous vs Heterogeneous
Populations)
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First group: higher initial temperature, second group: lower initial temperature
experiment 1: same control penalty coefficient R for both groups

experiment 2: second group’s control penalty coefficient R is lower than the
first group

31 / 32



Conclusions / Future Work

Mean field games based control is a natural approach for load
management in a smart grid context.

It exploits the predictability of large number averages to produce
decentralized controls with near centralized optimality properties.

It preserves system diversity while minimizing communications
requirements.

It is a flexible tool for shaping control effort among devices.

Weakness:

It overly relies on a correct statistical description of the underlying driving
stochastic processes as well as the random distribution of device
parameters.

Future work:

Develop online device model parameter identification and adaptation
algorithms.

Consider time varying collective target tracking problems.

Better address the impact of local constraints on global target generation.

Investigate cooperative mean field control solutions.
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