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Storage Problems

I Managing inventory in the presence of risk

I Sequentially decide when to augment/draw-down inventory given a randomly
evolving environment

I Stochastic Switching Control
I Natural Gas Storage facility (underground caverns):

I Maximize revenue: buy low/sell high
I Widely used by market participants through bespoke tolling/lease agreements

I Microgrid Battery Management:
I Renewable generation facility (solar or wind) leading to stochastic net demand
I Diesel generator for back-up
I Minimize costs: optimize battery operations
I Avoid blackouts/minimize diesel costs
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Output: Feedback Control

(a) m = +1 (Inject)
(b) Generator OFF (m = 0)

Figure: Left panel: action to undertake when injecting into a gas storage facility as a function of gas
price and current inventory: inject, store, withdraw. Right panel: action to undertake when diesel
generator is off, as a function of current residual demand and inventory: OFF, ON (variable level).

We are interested in efficient ways of generating these maps.
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Storage Problems as Control

I Abstractly: stochastic control of switching-type

I Stochastic factor Pt (price, demand, etc)

I Inventory variable It
I Controlled regime mt ∈M; switching costs K (m,m′)

I Typically [not required]: (Pt) is exogenous (follows an SDE); (It) is fully
endogenous, determined by (mt) (ODE)

I Objective and cost include all of (Pt , It ,mt) and subject to inventory constraints
It ∈ [Imin, Imax]

I View mt as a persistent regime that is part of the system state and drives system
dynamics [dependence vanishes if switching costs are zero]

I Discrete-time formulation
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Natural Gas Storage

I Gas price Pt – stochastic process

I Action space: M = {+1, 0,−1}: inject, store, withdraw

I Leads to control ct(m, I ) (cavern pressure) and inventory impact dIt = a(ct)dt

I Capacity constraint It ∈ [0, Imax]

I Discrete/ switching control space: pick the best action from M
I Notation: mtk+1

is the regime on [tk , tk+1], determines Itk+1
(previsible)
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Solution Structure
I Controlled inventory: Îtk+1

= Îtk + a
(
ctk (m̂tk+1

(t,P, I , m̂tk ))
)
∆t

I If Pt is high – inject; if low : withdraw.
I Key output is the control map from which recursively read-off m∗(t,Pt , It ,mt).

(a) Control map
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(b) Pathwise control/inventory

Figure: Left panel: snapshot of the control map m̂(t,P, I ) at t = 2.7 years. Top right: a given
trajectory of commodity price (Pt) following logarithmic mean reverting dynamics. Lower right:
Corresponding trajectories of controlled inventory Ît starting at Î0 ∈ {0, 500, 1000, 2000}. Obtained
from the PR-1D solution scheme.
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Stochastic Control Formulation

I Value function

V (tk ,P, I ,m) = sup
mtk

E
[
v(tk ,Ptk , Itk ,mtk )

∣∣∣ Ptk = P, Itk = I ,mtk = m
]

I Payoff is v(tk ,Ptk , Itk ,mtk ) :=∑K−1
s=k e−r(ts−tk )[π(Pts , ctk (mts+1))∆t − K (mts ,mts+1)] + e−r(T−tk )W (PT , IT )

I Continuation value: q(tk ,P, I ,m) := E
[
e−r∆tV (tk+1,Ptk+1

, I ,m)
∣∣Ptk = P

]
.

I Dynamic Programming equation

V (tk ,Ptk , Itk ,mtk ) = max
m∈J

E
[
π∆(Ptk ,mtk ,m) + e−r∆tV (tk+1,Ptk+1

, Itk+1
(m),m)

∣∣∣Ptk

]
I Optimal control m∗tk+1

(tk ,Ptk , Itk ,mtk ) is the argmax above.
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Existing Solution Methods

I PDE-based (Chen and Forsyth ’08, Thompson ’16) – degenerate in I -coordinate;
limited to 1D factor models.

I Regression Monte Carlo: Carmona-L (’10), Denault et al (’13), Boogert and de
Jong (’08, ’11), Warin (’10), Bauerle and Riess (’16), Malyscheff and Trafalis
(’17), Balata and Palczewski (’17),....

I Classic RMC: generate forward paths, use the resulting stochastic mesh to solve
the DPE, employ cross-sectional regression for the conditional expectation.
Construct pathwise rewards.

I Key challenge for applying RMC is how to handle the endogenous It – cannot do
global path simulation
I Inventory path back-propagation and quasi-simulation
I Treat It as a parameter, solve a collection of 1-D problems in Pt

I Control randomization

Mike Ludkovski Dynamic Emulation



RMC History Dynamic Emulation

Regression: The -1D Discretization Trick

I Reduce to a finite number of 1D switching
problems by discretizing the inventory I , solved
in parallel

I MI + 1 levels I0, I1, . . . , IMI
, fit in P for each

level, i.e. optimize for ĥj(P) := ~βj
T ~φ(P) for

j = 0, . . . ,MI

I Interpolate:
ĥtk (P, I ) := δ(I ) ĥj(P) + (1− δ(I )) ĥj+1(P),

where δ(I ) =
I−Ij

Ij+1−Ij .

I Makes the policy smooth in P but not in I ; the
discretization grid (Im) plays a big role

I Works very well but limited scope
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RMC for Storage: Machine Learning Perspective

I Abstract away the conventional RMC particulars

I The storage model is viewed as stochastic simulator(s) that produces noisy
pathwise observations conditional on the control

I Learn the continuation or q-value q(t,P, I ,m): cost-to-go conditional on
next-step regime m; done recursively over t

I Sub-modules [each has multiple viable schemes]:

I Approximation of the conditional expectation defining q

;

I Evaluation of the optimal control [trivial if m is discrete]
I Evaluation of the pathwise continuation value

I Solve the storage control problem ⇔ Recursively identify the control map + value
function given a pathwise reward simulator

I Put another way:

build an empirical︸ ︷︷ ︸
simulation−based

approximation to the value function

V (t, ·) — machine learning
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L. -Maheshwari (2018)

I Develop a template for a simulation-based approach to stochastic storage

I Extend latest Regression Monte Carlo techniques to switching control

I A plug-and-play modular algorithm interpreted as a (machine/statistical) learning
problem

I Nests existing literature + offers MANY more choices

I Illustrate with some examples (not meant to benchmark yet): Gas
Storage/Microgrid Control

I Contributes to the StOpt library developed by Xavier Warin...
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RMC Background: Optimal Stopping

I State process X·, payoff h(Xt), discrete-time: t = 1, 2, . . . ,T

I Objective: maximize reward V (t, x) = supτ Et,x [h(Xτ )]

I Solution: τ∗ = inf{t : Xt ∈ St}∧T . Stopping region: St = {x : V (t, x) = h(x)}
I Timing value (aka q-value):

T (t, x) := Et,x [V (t + 1,Xt+1)]− h(x) = Et,x

[
h(Xτt+1)

]
− h(x).

I Then St = {x : T(t, x) < 0} and V (t, x) = h(x) + max(T (t, x), 0)

I Simplest control problem: compare 2 alternatives and choose the best action

I (Later come back to multiple alternatives and multiple state variables)
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Regression Monte Carlo

I The key step is to compute the conditional expectation

I Recast it as a learning task: put in Xt = x , get back V (t + 1,X t,x
t+1) = y

I Want to learn the input/output relationship between x ’s and y ’s

I Build an emulator (statistical surrogate) using some training data

I Use the emulator to predict for new test data
I Ingredients:

I The emulator architecture
I Training data
I How to obtain y ’s in the context of DP
I Performance metrics

I These questions are well-addressed within the Statistical Learning paradigm
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First-Generation RMC

I Late ’90s: Carriere ’96, Tsitsiklis-van Roy ’00, Longstaff-Schwartz ’01
I Emulator architecture: classical OLS regression/linear model

I Parametrize the emulator via basis functions
I Empirically estimate the coefficients ~α

I Training data:

I xnt := X
0,x0,(n)
t — database of N global Xt-paths

I Probabilistic simulation design reflects the distribution of X 0,x0
t

I Simulator responses:

I TvR: yn
t = V̂ (t + 1,X

(n)
t+1), one-step look-ahead

I LS: τ ′ = inf{s > t : X
(n)
s ∈ Ŝs} and yn

t := h(X
(n)
τ ′ ) – pathwise reward

I Performance metric:
∑

t ‖V̂ (t, ·)− V (t, ·)‖2
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Longstaff-Schwartz 1.0: {xt , yt}1:N pairs

I 1-D Bermudan Put in GBM model,
K = 40 strike

I Piecewise linear approximation of
T (t, x) (10 knots in x) at t = 0.6

I 50,000 xnt ∼ LogNormal

I wild response distribution + low
signal-to-noise

I inefficient design: out-of-the-money
xt > 40 samples are useless

I Non-adaptive regression w/22
degrees of freedom
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Enhancements: RMC v1.5

I Improved regression: adaptive bases; regularized; nonparametric;

I Improved performance metrics/ convergence proofs to handle dependent
regressions

I Belomestny: |V (0, x)− V̂ (0, x)| ≤ E0,x

[∑T
s=0 |T (s,Xs)|1{Xs∈Errs}

]
where

Errt := St4Ŝt = {x : signT (t, x) 6= sign T̂ (t, x)}.
I Hybrid methods for high-dimensions: regression + interpolation, regression +

PDE

I Take expectations then project vs. Project then take expectations (“Regress
Later”)

I Warin, Gobet, Oosterlee, Belomestny, Stentoft, Kohler, Bender, Egloff,
Tompaidis, ... (4000+ citations to LS)
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Our team in the past 5 years: RMC 2.0

I Templated algorithm with a unified stochastic simulation view. Multiple strategies
to be combined in a plug-and-play fashion

+ Adaptive Experimental designs

+ Modern emulator frameworks → Gaussian Process regression

+ Objective is to learn the sign of T (t, x) (rank reward vs continuation) –
contour-finding

I Multiple links to machine learning (Stats/CS/OR which all have their own
terminology)
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Illustrating RMC 2.0: 2D Max Call

I Color-coded according to T (t, x)

I Red contour indicates the stopping
boundary

I preferentially target regions where
T (t, ·) changes signs

I Use active learning heuristics – add x
sites where T̂ (t, x) ' 0 or where
Sd(T̂ (t, x)) is large

I Bespoke regression + bespoke mesh
(100 adaptive sites x 40 replications) 60 80 100 120 140
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RMC History Dynamic Emulation Switching Costs Microgrids

Dynamic Emulation for Stochastic Storage Problems

I Recall the building blocks of RMC:

I Regression – how to approximate the conditional expectation (parametric,
non-parametric, bivariate)

I Design – which data to use for the regression/experiment design: judiciously
selecting simulations to run

I Simulation – how to simulate pathwise continuation values

I Combine above with a modular framework that brings mix-and-match capabilities
I Advantages of DAE

I New choices: nonparametric regression
I New adaptive designs (rather than one ad hoc proposal)
I New batched designs
I Straightforward to modify for different contexts/higher dimensions
I Easy to incorporate additional bells-and-whistles

I Unifies Optimal Stopping RMC and Storage RMC (single software library)
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Dynamic Emulation Algorithm
Data: K (time steps), (Nk) (simulation budgets per step)

Generate design DK−1,m := (P
DK−1,m

K−1 , I
DK−1,m

K ) of size NK−1 for each m ∈ J .

Generate one-step paths P
n,DK−1,m

K−1 7→ P
n,DK−1,m

K for n = 1, . . . ,NK−1 and m ∈ J
Terminal condition: vnK ,m ←W (P

n,DK−1,m

K , I
n,DK−1,m

K ) for n = 1, . . . ,NK−1,m ∈ J
for k = K − 1, . . . , 1 do

for m ∈ J do

q̂(k , ·, ·,m)← arg minhk∈Hk

∑Nk

n=1 |hk(P
n,Dk,m

k , I
n,Dk,m

k+1 )− vn
k+1,m|2

Generate design Dk−1,m := (P
Dk−1,m

k−1 , I
Dk−1,m

k ) of size Nk−1 for each m ∈ J
Generate one-step paths P

n,Dk−1,m

k−1 7→ P
n,Dk−1,m

k for n = 1, . . . ,Nk−1

end
for n = 1, . . . ,Nk−1 and m ∈ J do

m′ ← argmaxj∈J {π∆(P
n,Dk−1,m

k ,m, j) + q̂(k ,P
n,Dk−1,m

k , I
n,Dk−1,m

k + a(ck(j))∆t, j)}
vn
k,m ← π∆(P

n,Dk−1,m

k ,m,m′) + e−r∆t q̂(k ,P
n,Dk−1,m

k , I
n,Dk−1,m

k + a(ck(m′))∆t,m′)

end

end

return {q̂(k , ·, ·,m)}K−1
k=1,m∈J
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RMC History Dynamic Emulation Switching Costs Microgrids

New Regression Proposal: Gaussian Processes

I Random field representation of the unknown q-value – non-parametric, similar to
kernel regression. x ≡ (P, I )

I Squared-Exp. Kernel: Hij := κ(x i , x j) = σ2
f exp

(
− 1

2 (x i − x j)TΣ−1(x i − x j)
)

I Hyperparameters: lengthscales Σii – smoothness in the i-th dimension; process
variance σf controls amplitude, prior mean m(·).

I The estimator is in terms of posterior mean/posterior variance, obtained from
MVN conditional formulas

I Prediction at x∗ after training at x:

q̂(k , x∗,m) = m(x∗) + H∗H
−1(vk+1,m −m(x))

I Fitting a GPR means estimating the hyperparameters
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Using GP emulators in DEA

I GPR is good for non-uniform designs since
intrinsically a local interpolator; this is crucial for
smooth bivariate fits

I GPR has N ′ degrees of freedom for N ′ unique xnt ’s

I Utilize a batched design (like a MC forest) –
multiple y ’s at each x

I Batching improves signal-to-noise ratio and reduces
GP regression overhead.

I Posterior variance can be used to create fully
adaptive designs (“Active Learning”)
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Other Regression Choices

I Global Polynomial regression

I Regress only in P; discretize + interpolate in I

I LOESS regression

I Any approximation architecture can be used – just need train and predict

methods

I The performance is necessarily linked to the choice of the training data
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How to train your DEA: Dk := (x , y)1:Nk

I In what dimension: Joint -2D (P, I ) or -1D by discretize+interpolate in I

I Space-filling vs Targeted – explore the entire state space or focus on most relevant
regions

I How to generate Dk : is x randomized or deterministic across runs?

I Replication/Batching – re-use same x for multiple simulations, then pre-average
pathwise value a la nested MC

I Design Size – Nk can be time-dependent

I Mix-and-match across time-steps
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Comparing Implementations of DEA: Gas Storage
Regression Simulation Budget

Design Scheme Low Medium Large

Conventional

PR-1D 4,965 5,097 5,231
GP-1D 4,968 5,107 5,247
PR-2D 4,869 4,888 4,891
LOESS-2D 4,910 4,969 5,011
GP-2D 4,652 5,161 5,243

Space-filling

PR-1D 4,768 4,889 5,028
GP-1D 4,854 5,064 5,224
PR-2D 4,762 4,789 4,792
LOESS-2D 4,747 4,912 4,934
GP-2D 4,976 5,080 5,133

Adaptive 1D
PR-1D 5,061 5,187 5,246
GP-1D 5,079 5,195 5,245

Dynamic
GP-1D 5,132 5,225 5,266
Mixed 5,137 5,205 5,228

Mixture 2D
PR-2D 4,820 4,835 4,834
LOESS-2D 4,960 4,987 5,003
GP-2D 5,137 5,210 5,233

Table: Valuation V̂ (0, 6, 1000) (in thousands) using different design-regression pairs and three
simulation budgets: Low N ' 10K , Medium N ' 40K , Large N ' 100K .
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Explaining Design Choices
I Probabilistic – reflects the distribution of (Pt , Î t)
I Space Filling: explore continuation values throughout the input domain.

Sub-choices:
I Quasi Monte Carlo sequences (Sobol)
I Latin Hypercube Sampling
I Gridded

I Adaptive – target efficient learning of the action boundaries
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(d) Conventional

product design P × G

Figure: Different simulation designs D; in all cases N = 500.
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Some Conclusions

I Space-filling designs do not target enough (unless really fine-tune the input
domain)

I Probabilistic designs do not explore enough

I Mixtures of the two work very well

I In 1+1 dimensions, the -1D methods work extremely well, but GP-based -2D
regression is competitive

I The latter requires batched designs for efficient computation

I GPR straightforwardly generalizes to higher dim (cf. 3D example with 2 storage
facilities in the paper)
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Add Switching Costs

With switching costs K (m,m′) the current regime mt becomes part of the state due to
preference for inertia. Now have to compute 3 different continuation functions q̂(·,m).

(a) m = +1 (Inject) (b) m = 0 (Store) (c) m = −1 (Withdraw)

Figure: The control maps m̂(t,P, I ,m) at t = 2.7 years for the model with switching costs

K(−1, 1) = K(0, 1) = 15000;K(1,−1) = K(0,−1) = 5000;K(1, 0) = K(−1, 0) = 0. The colors are

m̂t+∆t = +1 (inject, light yellow), m̂t+∆t = 0 (store, medium cyan), m̂t+∆t = −1 (withdraw, dark

blue). The solution used GP-2D regression with Mixture design.
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Microgrids: Avoiding Blackouts

I Renewable generation facility (solar or wind)

I Microgrid demand – Net demand Xt (e.g. follows an OU)

I Battery to smooth out local fluctuations; +diesel generator for back-up

I Battery Itk+1
= Itk + a(ctk )∆t = Itk + Btk ∆t

I Diesel is OFF or ON (m = 1) with output

ctk (1) = Xtk 1{Xtk
>0} + Bmax ∧

Imax−Itk
∆t

I Battery output for balancing purposes:

Btk := a(ctk ) = − Itk
∆t ∨

(
Bmin ∨ (ctk −Xtk )∧Bmax

)
∧ Imax−Itk

∆t .

I Imbalance Stk = ctk − Xtk − Btk – should be zero

I Stk > 0 – curtailment; Stk < 0 – blackout

I Cost: π(c ,X ) := −cγ − |S |
[
C21{S<0} + C11{S>0}

]

Mike Ludkovski Dynamic Emulation



RMC History Dynamic Emulation Switching Costs Microgrids

Controlling the Diesel
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(a) Pathwise trajectory (b) Generator OFF (m = 0) (c) Generator ON (m = 1)

Figure: Left panel: trajectory of the residual-demand (Xt), corresponding to policy (ct) and the resultant

inventory trajectory (Ît). Middle and right panels: the control policy ĉ(t,X , I ,m) at t = 24 hours. Recall that
c(0) = 0 whenever the diesel is OFF. All panels are based on GP-2D regression and Mixture design
D = P2(0.5N) ∪ L2(0.5N).
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DEA for Microgrid Control

Straightforward adaptation; Discretize potential diesel output, m ∈ {0, 1, 2, . . . , 10}
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I Joint regression together with a mixture design wins again

I Discretization in I works less well because the solution is more nonlinear

I Quite different setup, but results are consistent with the storage example
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Looking Ahead: RMC v3.0

I RMC is poised to be a centerpiece of Applied Stochastics
I Export the outlined ideas to:

I Quantitative Finance: XVA, parametric pricing/hedging
I Risk Management: (T)VaR estimation, capital requirements
I Probability: BSDEs
I Control: approximate dynamic programming
I OR/UQ: stochastic simulation

I Ultimate goals: speed; scalability; efficiency; adaptivity

I Handle more complicated (i) optimization in m; (ii) risk attitudes; (iii) constraints
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