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E. Gobet - McKean FBSDE and microgrid 1.1 Context

1 Modeling the micro-grid
1.1 Context

Recent deep transformations in the mechanisms of energy purchase / sale,
distribution / consumption: Renewable Energies, storage, aggregation, home
automation, setting up of microgrids. . .

At the scale of a district. . .
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1.2 The system

X Context: management of smart district/building

I equipped with solar panels (one could complete also with wind farms)

I connected to a "public" grid providing electricity

I equipped with a battery (or any storage capacities)

X State variables: Grid Power, State Of Charge, weather variables,
inside temperature, building consumption

X Uncertainty: global consumption, PV production (intermittent)

X Controls: HVAC, lighting, battery (playing the role of a buffer)

X Economic criterion: reduction of the uncertainty of the demand on
the grid load, look for smoothing the demand over the day

Electricity producer: better sizing of energy-production units

Grid manager: better management of power flow on the public grid

Consumer (or aggregator): contract with lower electricity price
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1.3 Time scale of the optimization problem
Optimization window = 24h to 48h, to account for

X large variability of weather forecast (impact on PV production)

X variability of consumption forecast (in particular if any industrial activities in
the district)

Timeline

X At Day D-1 before noon:

I get the weather forecast from MeteoFrance as a single point forecast

I build a probabilistic model of irradiance uncertainty (for PV production)

I compute the optimal mean consumption on the public grid for Day D
[à McKean optimization]

I send this as a demand for electricity on the spot market

X At Day D:

I use the optimal strategy for battery management computed at Day D-1

X Time-consistency when forecasts are updated?
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1.4 Ingredients for designing the micro-grid management

Goal: How to minimize the variability of the grid load?

1. Consider an optimization criterion

For instance: over T = 1 day horizon,

min
controlt

∫ T

0

(
κVar

[
Pgrid(t)

]
+ µE

[
P2bat(t)

]
+ ν E

[(
SOC(t)− 1

2

)2
])

dt

+ ν̃ E

[(
SOC(T)− 1

2

)2
]

X Compromise between
I variability of Pgrid averaged over the day
I large charge/discharge of the battery (aging effect)
I maintening the battery at the medium level of charge

X Installation cost treated separately

X Looks like a Linear-Quadratic problem
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Variant with penalizing differently excess/deficit of demand

X Convex loss function `:

-��� -��� ��� ���

���

���

���

���

���

��������� ������������

X min
controlt

∫ T

0

(
κ inf

m
E [`(Pgrid(t)−m)]

+ µE
[
P
2
bat(t)

]
+ ν E

[
(SOC(t)− 1

2
)2
] )

dt

+ ν̃ E
[
(SOC(T )− 1

2
)2
]

X If `(x) = x2, m? = E
[
Pgrid(t)

]
and infm E

[
`(Pgrid(t)−m)

]
= Var

[
Pgrid(t)

]
.

X Regarding Spot market: m? = optimal mean consumption for Day D

X In the following, we replace the inf by E
[
`(Pgrid(t)− E

[
Pgrid(t)

]
)
]
.

X Optimal stochastic control problem of McKean type (involving the
distribution of State Variables and of Control), see [Carmona-Delarue, AoP

2015, etc]
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2. Residential building consumption:

Pcons(t) = PHVAC(t) + PAppliance(t) + PLighting(t).

X Lighting: automatic mode, depends on the season and the hour of the day.
Negatively correlated to the irradiance [Not yet handled].

X HVAC: automatic mode to maintain a inside temperature within a range (e.g.
[19oC− 20oC]). Correlated to the weather conditions [Not yet
handled].

X Usually modeled with mean-reverting process with jumps (when switch
off-on devices or start/stop activities).
Example with a industrial building (tertiary sector):
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3. Power balance:

Pcons(t) = Pbat(t) + Psun(t) + Pgrid(t)

with Pbat ≷ 0, Psun ≥ 0, Pgrid ≥ 0 (no selling of extra production).

X Psun: depends on irradiance (see later), humidity, temperature, PV panel. . .

X Pbat: depends on the controller ut
I SOC: the State Of Charge variable.
I Power delivered by the battery:

Pbat(t) = φbat(ut, SOC(t)).

∗ u and Pbat have the same signs
∗ if SOC(t) = 0 and ut > 0, no extra discharge (Pbat(t) = 0). And vice-versa.

I Evolution of SOC:
dSOCu(t)

dt
= φSOC(ut, SOC

u(t)).

I Rough approximation: linear dynamics
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4. Irradiance

(a) No stationarity property in weather variables

Measurements of Global Horizon-
tal Irradiance from SIRTA (48.7◦N,
2.2◦E.) for the considered period.
Cumulated over 1 day.

(b) Daily fluctuations of irradiance depend much on the location and on the size
of the area

Small site Large site
Typically, grid resolution = 1.3km for weather forecast.

(c) Long term forecast are especially difficult (à T=1 day)

(d) We need probabilistic forecast (6= pointwise forecast) at a given location
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How to design a stochastic model?

X We shall take advantage of day-ahead forecasts (performed on day D-1)

Figure 3.2: Example of Variable Type Day. 2016 April 16th

Figure 3.3: Example of Cloudy Type Day. 2016 March 31st

8

Different MeteoFrance forecasts
(AROME, ARPEGE).
Horizons: Day=D, Day before=D-1.

X We account for the maximal irradiance (Clear Sky Model = cloudless sky).
Good proxy (using the Sun-Earth geometry and the day of the year):

Iclear sky model(t) = [83.69 sin(
2π

365.24
(D + 82.07)) + 1130.44] cos(θz(t))1.2

where D is the day of the year [0, 365], and θz(t) is the solar zenith angle.

X Clear Sky Index: Xt =
I(t)

Iclear sky model(t)
∈ [0, 1]

X Expected CSI: xforecast
t :=

Iforecast(t)

Iclear sky model(t)
∈ [0, 1]
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X SDE model (like Fisher-Wright or Jacobi process):

dXt = −a(Xt − xforecast
t )dt+ σXα

t (1−Xt)
βdWt

with α, β ∈ [ 1
2 , 1].

X Parameter estimations:

I a ≈ 0.75h−1: estimated from autocorrelogram
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I (α, β) ≈ (0.8,0.7):
Xti+1

−Xti

Xα
ti

(1−Xti)
β

d
≈ N (0, σ2

Dδ).

I the volatility σD is adjusted everyday as a function of the averaged
increments of the D − 1-forecast

ATICSID =
∑

ti∈Arome forecast times

∣∣∣∣ Iforecast(ti+1)

Iclear sky model(ti+1)
− Iforecast(ti)

Iclear sky model(ti)

∣∣∣∣ .

For each day D in the data set,
the standard deviation σD

√
δ as

a function of the Average Time
Increment CSI.

Linear relation of the form

σD
√
δ = 0.622×ATICSID + 0.0004 + error.
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E. Gobet - McKean FBSDE and microgrid 1.4 Ingredients for designing the micro-grid management�� ��Results for a day with mitigated weather (October, 24th, 2015)

Results for the
probabilistic
forecast

Distribution of
the irradiance
over the day
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2 Optimal stochastic control of McKean type
Accounting on the distribution of the system (through its moments): set
Xu
t = x0 +

∫ t
0
φ(s, ω, us, X

u
s )ds+ Zt (with Z exogenous càdlàg process) and

J (u) = E

[∫ T

0

l (t, ω, ut, X
u
t ,E [g(t, ω, ut, X

u
t )]) dt+ ψ(ω,Xu

T ,E [k(ω,Xu
T )]

]
→ min

u pred.

Standard Lipschitz/differentiability and measurability assumptions on
φ, l,g : [0,T]×Ω× Rd × Rp × · · · 7→ R··· and ψ,k : Ω× Rd × · · · 7→ R···

References of such a problem (without the distribution on the control):
[Carmona, Delarue, Lachapelle, 2013], [Carmona, Delarue, 2015] . . .

Our strategy of analysis, using Pontryagin principle:

1. necessary conditions by Gateaux differentiability à McKean Forward
Backward SDE

2. well-posedness of the McKean FBSDE

3. sufficient conditions under convexity conditions
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2.1 Necessary conditions

Theorem (Gâteaux derivatives). Let u ∈ H2 and set ḡut := E [g(t, ut, X
u
t )].

Assume smooth coefficients, define the FBSDE (Y,M)
−dYt =

(
∇xφ(t, ut, X

u
t )Yt +∇xl(t, ut, Xu

t , ḡ
u
t )

+∇xg(t, ut, X
u
t )E [∇ḡl(t, ut, Xu

t , ḡ
u
t )]

)
dt− dMt,

YT = ∇xψ (Xu
T ,E [k(Xu

T )]) +∇xk(Xu
T )E [∇k̄ψ (Xu

T ,E [k(Xu
T )])]

and assume that it has a square integrable solution (Y,M). Then, for any v ∈ H2,

∂εJ (u + εv)|ε=0 = E

[∫ T

0

{
lu(t,ut,X

u
t , ḡ

u
t ) + E [lg(t,ut,X

u
t , ḡ

u
t )] gu(t,ut,X

u
t )

+Y>t−φu(t,ut,X
u
t )

}
vtdt

]
.

�

We allow jumps in the dynamics à cadlag martingale M .
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2.2 McKean FBSDE

Theorem (Existence, uniqueness). Under technical assumptions, there is a
control u and a McKean-FBSDE (Y,M) satisfying the first-order optimality
conditions:

lu(t, ut, X
u
t , ḡ

u
t ) + E [lg(t, ut, X

u
t , ḡ

u
t )] gu(t, ut, X

u
t ) + (Y ut−)>φu(t, ut, X

u
t ) = 0,

−dYt =

(
∇xφ(t, ut, X

u
t )Yt +∇xl(t, ut, Xu

t , ḡ
u
t )

+∇xg(t, ut, X
u
t )E [∇ḡl(t, ut, Xu

t , ḡ
u
t )]

)
dt− dMt,

YT = ∇xψ (Xu
T ,E [k(Xu

T )]) +∇xk(Xu
T )E [∇k̄ψ (Xu

T ,E [k(Xu
T )])] .

X "Technical assumptions" :

I In general, small coefficients and small time (fixed-point argument)

I For linear-quadratic problem, solution in arbitrary time

X For LQ problems, explicit solution through the solution of Ricatti equations

X In general, resolution via regression Monte Carlo (like for BSDEs)
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2.3 Sufficient conditions

Simplified presentation with k = 0. Assume

1. The terminal cost ψ is convex.

2. The mapping

H :

H2,2 ×H∞,2 ×H∞,2 → R

(u,X, Y ) 7→
∫ T

0
E
[
l (t, ut, Xt,E [g (t, ut, Xt)]) + Y >t−φ(t, ut, Xt)

]
dt

is convex in (u,X) for any Y .
�

Hamiltonian in expectation and not pathwise.

Theorem. If (u, Y ) is the solution of McKean FBSDE, then the control u is
optimal.

All conditions are satisfied in the initial microgrid problem.
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2.4 Example: the Linear-Quadratic case

Dynamic of the system:
dSOC

dt
(t) = −Pbat(t)

Emax
.

X SOC (or X): level of charge of the battery

X Pbat (or u): power supplied by the battery

X Emax: energy capacity of the battery

X Pgrid(t) = Pload(t)− Pbat(t): power balance

Optimization criterion:

min
Pbat(.)

∫ T

0

(
κtVar(Pgrid(t)) + λt E

[
P2
grid(t)

]
+ µt E

[
P2
bat(t)

] )
dt

+

∫ T

0

(
νt E

[
(SOC(t)− soct)

2
] )

dt+
ω

2
E
[
(SOC(T )− socT )

2
]

Assumptions: κ, λ, µ, ω ≥ 0 and λ+ µ > 0
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McKean FBSDE:

dXt = − ut

Emax
dt,

X0 = SOC(0),

−dYt = νt (Xt − soct) dt− dMt,

YT = ω (XT − socT ),

(κt + λt + µt)ut = (κt + λt) Pload(t) + κt E [ut − Pload(t)] + Yt

Emax
.

à Closed-form solution (Ricatti equations).
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2.5 Numerical illustration: with or without battery
command

Here we consider the Linear-Quadratic case (explicit solution).

WITHOUT battery WITH battery

Pathwise behavior and Distribution of Pgrid
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8 SIMULATIONS FOR STATIONARY COEFFICIENTS 36

mean of the trajectories of Pgrid, as well as the 5% and 95% percentiles and a realization
(corresponding to the realization of the inputs represented in figure 8) of Pgrid for the
model chosen. The graph in 9b shows the empirical variance of the power supplied by the
grid Pgrid, still in the case where no battery is used.

(a) Distribution of Pgrid

(b) Empirical variance of Pgrid

Figure 9: Case without battery

These results will be used as reference for comparison with strategies using the battery.

8.2.5 No penalty for the state constraint

We now give the results of the simulations for the same parameters, where we use the
feasible control obtained using the procedure explained in 7.1, with ⌫ = 0, i.e. without

WITHOUT battery

8 SIMULATIONS FOR STATIONARY COEFFICIENTS 38

(a) Distribution of the control (b) Distribution of the state of charge

(c) Distribution of Pgrid (d) Empirical variance of Pgrid

Figure 11: Feasible trajectories associated to the optimal penalization parameter ⌫

The introduction of a penalty term and the optimization of the parameter ⌫ have the
e↵ect of limiting the occurrence of saturation phenomenon for the battery in comparison
to the unpenalized case (see figure 10), while preserving a low variance of Pgrid on the
whole time frame, in comparison with the case without battery (see figure 9).

This illustrates very well the trade-o↵ we are facing when optimizing the parameter
⌫: we have to choose it big enough to lower the probability of edge e↵ects for the battery
(i.e. the probability to have the battery full or empty), but not too big either in order not
to distort too much the structure of the cost functional.

8.2.7 Impact of the penalization parameter ⌫ on the cost

In the following graph, we show the impact of the penalization parameter ⌫ on the cost.
In the graph 12a, we represent the empirical cost (computed as a Monte-Carlo estimation
of the cost in (7.2)), as well as an asymptotic 95% confidence interval, as given by the
Central Limit theorem.

The graph in 12b represents the distribution of the estimations of individual costs for
various values of the parameter ⌫.

These quantities are computed using algorithm 2 page 28.

WITH battery

Empirical Variance of Pgrid
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Impact of the size of the battery on the cost and the optimal
penalization parameter
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3 Conclusion

X Modeling micro-grid management

I Optimization criterion: variability of Pgrid
I New irradiance modeling: using SDE. Good probabilistic forecast

I Optimal control: solution by Pontryagin principle, and McKean FBSDE

X Perspectives:

I Numerical resolution in general: design of Regression Monte-Carlo

I Coupling consumption to weather variables: Lighting ←→ irradiance,
inside temperature ←→ outside temperature and irradiance . . .

I Coupling with wind farms
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X Questions:

I Cost of installation (battery aging) vs savings using the management system

I Other storage capacities (heat networks, flywheel. . . ) [Maxime Grangereau
PhD thesis with EDF]

I Individual storage capacity vs mutualized ones?

I Which size for aggregating production/consumption?

I Impact of time-inconsistency

Thank you for your attention!
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