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Motivation and challenges

Challenges of renewable power generation

Impact of wind and solar on net-load at CAISO

Ramp limitations cause price-spikes

Price spike due to high net-load ramping
need when solar production ramped out

Negative prices due to high
mid-day solar production
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Motivation and challenges

Challenges: ancillary services
... to compensate for energy imbalances ... Kirby 2013
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~ Error Signal in Feedback Loop

Time-scale of power deviations are similar to secondary reserves following a fault

The Balancing Reserves at BPA are a sum of many error signals in the grid

http://www.consultkirby.com/files/PowerGen-2013_The_Value_of_Flexible_Generation_Nov_2013.pdf
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Motivation and challenges

Secondary Control
Balancing Authority

Figure 2 North American Balancing Authorities and Regions

Transmission lines that join two areas are known as tie-lines.
The net power out of an area is the sum of the flow on its tie-lines.
The flow out of an area is equal to
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Motivation and challenges

Secondary Control
Area Control Error

Area Control Error: combination of:

Deviation of frequency from nominal, and

the difference between the actual tie-line flow,
and the scheduled flow (from economic dispatch).

ACE = Pactual − Pscheduled +B∆ω

B is the bias

Provides a measure of whether an area is producing more or less than it should to
satisfy schedules and to contribute to controlling frequency.

AGC: control signal designed to bring ACE to zero.



Motivation and challenges

Secondary Control
Area Control Error

Area Control Error: combination of:

Deviation of frequency from nominal, and

the difference between the actual tie-line flow,
and the scheduled flow (from economic dispatch).

ACE = Pactual − Pscheduled +B∆ω

B is the bias

Provides a measure of whether an area is producing more or less than it should to
satisfy schedules and to contribute to controlling frequency.

AGC: control signal designed to bring ACE to zero.



Motivation and challenges

Secondary Control
Area Control Error

Area Control Error: combination of:

Deviation of frequency from nominal, and

the difference between the actual tie-line flow,
and the scheduled flow (from economic dispatch).

ACE = Pactual − Pscheduled +B∆ω

B is the bias

Provides a measure of whether an area is producing more or less than it should to
satisfy schedules and to contribute to controlling frequency.

AGC: control signal designed to bring ACE to zero.



Motivation and challenges

Secondary Control
Area Control Error

Area Control Error: combination of:

Deviation of frequency from nominal, and

the difference between the actual tie-line flow,
and the scheduled flow (from economic dispatch).

ACE = Pactual − Pscheduled +B∆ω

B is the bias

Provides a measure of whether an area is producing more or less than it should to
satisfy schedules and to contribute to controlling frequency.

AGC: control signal designed to bring ACE to zero.



Motivation and challenges

Secondary Control
Area Control Error

ETH Dynamics 2012
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Motivation and challenges

Primary and Secondary Control Loops
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Motivation and challenges

Balancing control loop

wind and solar volatility seen as disturbance

grid level measurements: scalar function of time (ACE)

compensation Gc designed by a balancing authority

In many cases control loops are based on standard PI (proportional-integral)
control design.

Compensation

+
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Motivation and challenges

Secondary Control
Regulation signals

Regulation: on-line generation, responsive
load and storage ... helps to maintain
interconnection frequency, manage
differences between actual and scheduled
power flows between balancing areas, and
match generation to load within the
balancing area.

Automatic Generation Control (AGC):
commands are typically sent about every
four seconds.

PJM RegD Measured
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PJM regulation metrics: scores for correlation, precision, and performance.
Faster and more accurate response is paid more.
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Motivation and challenges

Example: ACE and regulation signals at ERCOT
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Motivation and challenges

Does ACE Work?
Generators are not always good actuators
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ODE method for MDPs

ODE method for MDPs

Markov Decision Process with:

finite state space X; general action space U,

P (X(t+ 1) = x′ | X(t) = x, U(t) = u) = Pu(x, x′),

one-step reward w : X× U→ R.

Two standard optimal control criteria are finite-horizon:

W∗T (x) = max

T∑
t=0

E[w(X(t), U(t)) | X(0) = x]

where T ≥ 0 is fixed, and average reward :

η∗(x) = max
{

lim inf
T→∞

1

T

T−1∑
t=0

E[w(X(t), U(t)) | X(0) = x]
}
.

The maximum is over all admissible input sequences U = {U(t) : t ≥ 0};
obtained as deterministic state feedback under general conditions.



ODE method for MDPs

Linearly solvable MDP

(Todorov 2007)

The action space U: all probability mass functions on X,

P{X(t+ 1) = x′ | X(t) = x, U(t) = µ} = µ(x′) , x, x′ ∈ X, µ ∈ U .

The one-step reward is defined as the sum of two terms:

w(x, µ) = U(x)− cKL(x, µ).

The second term is a “control cost”, defined using Kullback–Leibler
divergence from nominal (control-free) transition matrix P0

cKL(x, µ) = D(µ‖P0(x, · )) :=
∑
x′

µ(x′) log
( µ(x′)

P0(x, x′)

)
.



ODE method for MDPs

Linearly solvable MDP

The solution with respect to the average reward criterion is obtained as the
solution to an eigenvector problem:

let (λ, v) denote the Perron-Frobenius eigenvalue-eigenvector pair for the
positive matrix

P̂ (x, x′) = exp(U(x))P0(x, x′), x, x′ ∈ X.

The “twisted” matrix

P̌ (x, x′) =
1

λ

v(x′)

v(x)
P̂ (x, x′) , x, x′ ∈ X ,

is a transition matrix on X. This matrix P̌ defines the dynamics of the model
under optimal control.

Limitations: in most applications, exogenous
disturbances we cannot directly control!

P
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ODE method for MDPs

Main results

New ODE approach for solving an entire family of MDP problems,
parameterized by a scalar ζ:

wζ(x, µ) = ζU(x)− cKL(x, µ).

Computational tool and tradeoff between reward and control effort.

Extension to constrained actions:
State space: X = Xu × Xn (control and exogenous dynamics);
X(t) = (Xu(t), Xn(t)).

Conditional-independence assumption: Xn(t+ 1) is conditionally
independent of the input at time t, given the value of X(t):

P (x, x′) = R(x, x′u)Q0(x, x′n), x, x′ ∈ X

R : randomized decision rule for Xu(t+ 1) given X(t) = x,
Q0 : distribution of Xn(t+ 1) given X(t) = x.
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ODE method for MDPs

Action constrained MDPs with KL-cost

The two optimal control problems can be transformed as:

W∗T (x, ζ) = max

T∑
t=0

Ex[w(X(t), R(t))]

η∗(ζ) = max
{

lim inf
T→∞

1

T

T−1∑
t=0

Ex[w(X(t), R(t))]
}

where the maximum is over sequences of randomized decision rules
{R(0), . . . , R(T )},

w(x,R) := ζU(x)− cKL(x,R)

and cKL(x,R) :=
∑
x′

P (x, x′) log
( P (x, x′)

P0(x, x′)

)
=
∑
x′u

R(x, x′u) log
( R(x, x′u)

R0(x, x′u)

)



ODE method for MDPs

Average reward

Assumptions:

P0 irreducible and aperiodic;

Action-constrained case: P (x, x′) = R(x, x′u)Q0(x, x′n), x, x′ ∈ X;

Reward: w(x,R) = ζU(x)− cKL(x,R).

Average reward fixed point equation:

max
R

{
w(x,R) +

∑
x′

P (x, x′)h∗ζ(x
′)
}

= h∗ζ(x) + η∗(ζ)

Convention: h∗ζ(x
◦) = 0, for x◦ ∈ X is a fixed state.

The maximizer defines a transition matrix:

P̌ζ = arg max
P

{
ζπ(U)−K(P‖P0) : πP = π

}
with K(P‖P0) =

∑
x,x′ π(x)P (x, x′) log

(
P (x,x′)
P0(x,x′)

)
(Donsker-Varadhan rate function).



ODE method for MDPs

Theorem

There exist optimizers {π̌0ζ , P̌ζ : ζ ∈ R}, and solutions {h∗ζ , η∗(ζ) : ζ ∈ R} s.t.

P̌ζ can be obtained from the relative value function h∗ζ as

P̌ζ(x, x
′) := P0(x, x′) exp

(
hζ(x

′
u | x)− Λhζ (x)

)
where hζ(x

′
u | x) =

∑
x′
n
Q0(x, x′n)h∗ζ(x

′
u, x
′
n), and Λhζ (x) is the normalizing

constant.

{π̌0ζ , P̌ζ , h∗ζ , η∗(ζ) : ζ ∈ R} are continuously differentiable in the parameter ζ.

A vector field V : Rd → Rd (with d = |X|) is constructed s.t.

d
dζh
∗
ζ = V(h∗ζ) , with boundary condition h∗0 ≡ 0.
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ODE method for MDPs

ODE for the average reward

For any function h : X→ R,

(i) Define a new transition matrix:

Ph(x, x′) := P0(x, x′) exp
(
h(x′u | x)− Λh(x)

)
, x, x′ ∈ X, (1)

with h(x′u | x) =
∑
x′
n
Q0(x, x′n)h(x′u, x

′
n), and Λh(x) is a normalizing constant.

(ii) Let Hh = H(Ph), be a solution to Poisson’s equation,

PhHh = Hh − U + Uh , where Uh := πh(U) :=
∑
x

πh(x)U(x).

and define V(h) = Hh.

Note: The functional H is constructed so that Hh(x◦) = 0 for any h.



Control Architecture

Control Goals and Architecture
Macro control

High-level control layer: BA or a load aggregator.

The balancing challenges are of many different categories and time-scales:

Automatic Generation Control (AGC); time scales of seconds to 20 minutes.

Balancing reserves. In the Bonneville Power Authority, the balancing reserves
include both AGC and balancing on timescales of many hours. Balancing on
a slower time-scale is achieved through real time markets in some other
regions of the U.S.

Contingencies (e.g., a generator outage)

Peak shaving

Smoothing ramps from solar or wind generation



Control Architecture

Tracking objective
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In the past, provided by the generators - high costs!



Control Architecture

Control Goals and Architecture
Local Control: decision rules designed to respect needs of load and grid

Local feedback loop

Local
Control

Load i
ζt Y i

tU i
t

Xi
t

Gr
id 

sig
na

l
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l d
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r d
ev
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ion

Min. communication: each load monitors its state and a regulation signal
from the grid.

Aggregate must be controllable: randomized policies for finite-state loads.



Control Architecture

Randomized Policies

Local feedback loop

Local
Control
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Local control architecture

For the ith load:

Y it power, U it load setpoint, Xi
t local state.

Signal ζt is from the grid operator – common to all loads of a certain class.

Policy: Decision rule that maps (ζt, X
i
t) to the input U it .

Randomized Policy: Decision rule also depends on rand

(an intelligent coin-flip)
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Control Architecture

Load Model
Controlled Markovian Dynamics

...

Load 1

BA
Reference (MW)

Load 2

Load N

ζ
r 

+

Gc

Power
Consumption (MW) 

Discrete time: ith load Xi(t) evolves on finite state space X

Each load is subject to common controlled Markovian dynamics.

Signal ζ = {ζt} is broadcast to all loads

Controlled transition matrix {Pζ : ζ ∈ R}:

P{Xi
t+1 = x′ | Xi

t = x, ζt = ζ} = Pζ(x, x
′)

Questions

• How to analyze aggregate of similar loads? • Local control design?



Control Architecture

How to analyze aggregate?
Mean field model

N loads running independently, each under the command ζ.

Empirical Distributions:

µNt (x) =
1

N

N∑
i=1

I{Xi(t) = x}, x ∈ X

U(x) power consumption in state x,

yNt =
1

N

N∑
i=1

U(Xi
t) =

∑
x

µNt (x)U(x)

Mean-field model:
via Law of Large Numbers for martingales

µt+1 = µtPζt , yt = 〈µt,U〉

ζt = ft(y0, . . . , yt) by design



Control Architecture

Local Design
Goal: Construct a family of transition matrices {Pζ : ζ ∈ R}

Nominal model
A Markovian model for an individual load, based on its typical behavior.

Finite state space X = {x1, . . . , xd};
Transition matrix P0, with unique invariant pmf π0.

Common structure for design
The family of transition matrices used for distributed control is of the form:

Pζ(x, x
′) := P0(x, x′) exp

(
hζ(x, x

′)− Λhζ (x)
)

with hζ continuously differentiable in ζ, and the normalizing constant

Λhζ (x) := log
(∑
x′

P0(x, x′) exp
(
hζ(x, x

′)
))

Assumption: for all x ∈ X, x′ = (x′u, x
′
n) ∈ X, hζ(x, x

′) = hζ(x, x
′
u).
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Common structure for design
The family of transition matrices used for distributed control is of the form:

Pζ(x, x
′) := P0(x, x′) exp

(
hζ(x, x

′)− Λhζ (x)
)

with hζ continuously differentiable in ζ, and the normalizing constant

Λhζ (x) := log
(∑
x′

P0(x, x′) exp
(
hζ(x, x

′)
))

Assumption: for all x ∈ X, x′ = (x′u, x
′
n) ∈ X, hζ(x, x

′) = hζ(x, x
′
u).



Control Architecture

Local Design
Goal: Construct a family of transition matrices {Pζ : ζ ∈ R}

Construction of the family of functions {hζ : ζ ∈ R}

Step 1: The specification of a function H that takes as input a transition matrix.
H = H(P ) is a real-valued function on X× X.

Step 2: The families {Pζ} and {hζ} are defined by the solution to the ODE:

d
dζhζ = H(Pζ), ζ ∈ R,

in which Pζ is determined by hζ through:

Pζ(x, x
′) := P0(x, x′) exp

(
hζ(x, x

′)− Λhζ (x)
)

The boundary condition: h0 ≡ 0.
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Control Architecture

Local Design
Extending local control design to include exogenous disturbances

For any function H◦ : X→ R, one can define

H(x, x′u) =
∑
x′
n

Q0(x, x′n)H◦(x′u, x
′
n) (2)

Then functions {hζ} satisfy

hζ(x, x
′
u) =

∑
x′
n

Q0(x, x′n)h◦ζ(x
′
u, x
′
n),

for some h◦ζ : X→ R. Moreover, these functions solve the d-dimensional ODE,

d
dζh
◦
ζ = H◦(Pζ), ζ ∈ R,

with boundary condition h◦0 ≡ 0.
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Control Architecture

Individual Perspective Design

Local welfare function: Wζ(x, P ) = ζU(x)−D(P‖P0),

where D denotes relative entropy: D(P‖P0) =
∑
x′ P (x, x′) log

( P (x,x′)
P0(x,x′)

)
.

Markov Decision Process: lim supT→∞
1
T

∑T
t=1E[Wζ(Xt, P )]

Average reward optimization equation (AROE):

max
P

{
Wζ(x, P ) +

∑
x′

P (x, x′)h∗ζ(x
′)
}

= h∗ζ(x) + η∗ζ

where P (x, x′) = R(x, x′u)Q0(x, x′n), x′ = (x′u, x
′
n)



Control Architecture

Individual Perspective Design

ODE method for IPD design:

Family {Pζ}: Pζ(x, x′) := P0(x, x′) exp
(
hζ(x, x

′)− Λhζ (x)
)

Functions {hζ}: hζ(x, x′u) =
∑
x′
n
Q0(x, x′n)h◦ζ(x

′
u, x
′
n),

for h◦ζ : X→ R solutions of the d-dimensional ODE,

d
dζh
◦
ζ = H◦(Pζ), ζ ∈ R,

with boundary condition h◦0 ≡ 0.

H◦ζ (x) = d
dζh
◦
ζ(x) =

∑
x′ [Zζ(x, x

′)− Zζ(x◦, x′)]U(x′), x ∈ X,

where Zζ = [I − Pζ + 1⊗ πζ ]−1 =
∑∞
n=0[Pζ − 1⊗ πζ ]n is the fundamental matrix.
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Individual Perspective Design
Linearized dynamics
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Bode plots for IPD: Linearizations at five values of ζ

Proof of positive real condition for reversible load dynamics.
Busic & Meyn [CDC’14] Passive Dynamics in Mean Field Control
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Control Architecture

System Perspective Design
Strictly positive real by design

Goal: The transfer function of the delay-free linearized aggregate model is passive:

∞∑
t=0

utyt+1 ≥ 0, ∀{ut}.

Recall: The linearization at a particular value ζ is the state space model with transfer function,

Gζ(z) = C[Iz −A]−1B

in which A = P T
ζ , Ci = Ũζ(xi) for each i, and

Bi =
∑
x

πζ(x)Eζ(x, xi), 1 ≤ i ≤ d

Eζ = d
dζ
Pζ Ũζ = U − Uζ , with Uζ = πζ(U).

Sufficient condition: positive real.

A discrete-time transfer function F is positive-real if it is stable (all poles are
strictly within the unit disk), and F (ejθ) + F (e−jθ) ≥ 0, θ ∈ R.
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Control Architecture

System Perspective Design
Strictly positive real by design

SPD design:

PO = P �P, with P � adjoint of P in L2(π):

P �(x, x′) = π(x′)
π(x)

P (x′, x), x, x′ ∈ X.

H◦(x) =
∑
x′ [ZO(x, x′)− ZO(x◦, x′)]U(x′) x ∈ X

where ZO = [I − PO + 1⊗ π]−1 the fundamental matrix for PO

Thm. (SPD design) If PO0 = P �0 P0 is irreducible, and P0 = R0, then the linearized
state-space model at any constant value ζ satisfies

G+
ζ (ejθ) +G+

ζ (e−jθ) ≥ σ2
ζ , θ ∈ R

where σ2
ζ is the variance of U under πζ and G+(z) := zG(z).
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Control Architecture

Exponential family
Alternative to solving an ODE

For a function H◦e : X→ R, define for each x, x′u and ζ,

hζ(x, x
′
u) = ζHe(x

′
u | x)

with He(x
′
u | x) :=

∑
x′
n

Q0(x, x′n)H◦e (x′u, x
′
n)

Myopic design: H◦e = U .

Linear approximations to the IPD or SPD solutions, with H◦e = H◦(P0).
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Myopic Design
Linearized dynamics
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Examples

Example: pool pumps
How Pools Can Help Regulate The Grid

 1,5KW 400V

Needs of a single pool

. Filtration system circulates and cleans: Average pool pump uses 1.3kW and
runs 6-12 hours per day, 7 days per week

. Pool owners are oblivious, until they see frogs and algae

. Pool owners do not trust anyone: Privacy is a big concern
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One Million Pools in Florida
Pools Service the Grid Today

On Call1: Utility controls residential pool pumps and other loads

Contract for services: no price signals involved

Used only in times of emergency — Activated only 3-4 times a year

Opportunity:
FP&L already has their hand on the switch of nearly one million pools!

Surely pools can provide much more service to the grid

1Florida Power and Light, Florida’s largest utility.
www.fpl.com/residential/energysaving/programs/oncall.shtml

www.fpl.com/residential/energysaving/programs/oncall.shtml 
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An Intelligent Pool
Local Control Architecture

1 2
. . .On

O�
12
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I −1 I

I I −1Local control architecture

For the ith load:

Y it = power: 1kW when running,

U it = 1 or 0 (pool pump is running or not)
Xi
t local state: (U it , I

i
t), with Iit the time in current power state.

Randomized Policy: Decision rule that maps (ζt, X
i
t , rand

t
i) to the input U it .

Randomized Policy: As ζ increases, probability of turning on increases:

0 24 hours12
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Tracking Grid Signal with Residential Loads
Example: 20 pools, 20 kW max load

Each pool consumes 1kW when operating
12 hour cleaning cycle each 24 hours

Power Deviation:
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Nearly Perfect Service from Pools
Meyn et al. 2013 [CDC], Meyn et al. 2015 [IEEE TAC]
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Tracking Grid Signal with Residential Loads
Example: 300,000 pools, 300 MW max load

Each pool consumes 1kW when operating
12 hour cleaning cycle each 24 hours

Power Deviation:
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Range of services provided by pools
Example: 10,000 pools, 10 MW max load

ReferencePower Deviation
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Examples

Example: Thermostatically Controlled Loads

refrigerators, water heaters, air-conditioning . . .

TCLs are already equipped with primitive “local intelligence” based on a
deadband (or hysteresis interval)

The state process for a TCL at time t:

X(t) = (Xu(t), Xn(t)) = (m(t),Θ(t)) ,

where m(t) ∈ {0, 1} denotes the power mode (“1” indicating the unit is on),
and Θ(t) the inside temperature of the load

Exogenous disturbances: ambient temperature, and usage
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Example: Thermostatically Controlled Loads

The standard ODE model of a water heater is the first-order linear system,

d

dt
Θ(t) = −λ[Θ(t)−Θa(t)] + γm(t)− α[Θ(t)−Θin(t)]f(t) ,

Θ(t) temperature of the water in the tank
Θin(t) temperature of the cold water entering the tank
f(t) flow rate of hot water from the WH
m(t) power mode of the WH (“on” indicated by m(t) = 1).

Deterministic deadband control: Θ(t) ∈ [Θ−, Θ+]

Nominal model for local control design: based on the specification of two CDFs
for the temperature at which the load turns on or turns off
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Example: Thermostatically Controlled Loads

Discrete-time control.

At time instance k, if the water heater is on (i.e., m(k) = 1), then it turns off
with probability,

p	(k + 1) =
[F	(Θ(k + 1))− F	(Θ(k))]+

1− F	(Θ(k))

where [x]+ := max(0, x) for x ∈ R;

Similarly, if the load is off, then it turns on with probability

p⊕(k + 1) =
[F⊕(Θ(k))− F⊕(Θ(k + 1))]+

F⊕(Θ(k))

The nominal behavior of the power mode can be expressed

P{m(k) = 1 | θ(k − 1), θ(k),m(k − 1) = 0} = p⊕(k)

P{m(k) = 0 | θ(k − 1), θ(k),m(k − 1) = 1} = p	(k)
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Example: Thermostatically Controlled Loads

Myopic design - exponential tilting of these distributions:

p⊕ζ (k) := P{m(k) = 1 | θ(k − 1), θ(k),m(k − 1) = 0, ζ(k − 1) = ζ}

=
p⊕(k)eζ

p⊕(k)eζ + 1− p⊕(k)

p	ζ (k) = P{m(k) = 0 | θ(k − 1), θ(k),m(k − 1) = 1, ζ(k − 1) = ζ}

=
p	(k)

p	(k) + (1− p	(k))eζ

If p⊕0 (k) > 0, then the probability p⊕ζ (k) is strictly increasing in ζ, approaching 1

as ζ →∞; it approaches 0 as ζ → −∞, if p⊕0 (k) < 1.
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Example: Thermostatically Controlled Loads
System identification

d
dt

Θ(t) = −λ[Θ(t)−Θa(t)] + γm(t)− α[Θ(t)−Θin(t)]f(t) ,

Θ(t) temperature of the water in the tank

Θin(t) temperature of the cold water entering the tank

f(t) flow rate of hot water from the WH

m(t) power mode of the WH (“on” indicated by m(t) = 1).

Temp. Ranges ODE Pars. Loc. Control

Θ+ ∈ [118, 122] F λ ∈ [8, 12.5]× 10−6 Ts = 15 sec

Θ− ∈ [108, 112] F γ ∈ [2.6, 2.8]× 10−2 κ = 4

Θa ∈ [68, 72] F α ∈ [6.5, 6.7]× 10−2 % = 0.8

Θin ∈ [68, 72] F Pon = 4.5 kW θ0 = Θ−

Heterogeneous population: 100 000 WHs simulated by uniform sampling of the
values in the table
Usage data from Oakridge National Laboratory (35WHs over 50 days)
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Tracking performance
and the controlled dynamics for an individual load

100,000 water-heaters
When on, individual load consumes 4, 5 kW
With no usage, approx. 2% duty cycle, avg. power consumption 10MW.
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Tracking performance
Potential for contingency reserves and ramping

ζ
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Tracking performance
and the controlled dynamics for an individual load

Heterogeneous setting:

40 000 loads per experiment;

20 different load types in each case

Lower plots show the on/off state for a typical load
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Example: fleet of batteries

[B. Hashmi, Meyn ACC’17]

State: x = (m, s), where m ∈ {ch, dis, id} denotes charging mode, and s ∈ [0, 1]
denotes the SoC.

The power delivery at state x depends only on charging mode:
U(ch, s) = Uch < 0, U(id, s) = 0, U(dis, s) = Udis > 0.

Nominal model: Xi
t = (M i

t , S
i
t) denote the state of ith battery at time t.

Sit+1 = Sit + hδch, if M
i
t = ch, Sit+1 = Sit − hδdis, if M

i
t = dis,

Sit+1 = Sit , if M
i
t = id, where h is the time step length, and δch and δdis charging

and discharging rates.

The dynamics of the first component are governed
by a “two coin-flip” randomized policy.

For example, in state (ch, s), the battery changes

its mode to idle with probability

(1− pch(s))× pid(s)/(pid(s) + pdis(s))
0

0.5

1
pid idle
pch charging
pdis discharging

0 1SoC 
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Example: fleet of batteries

[B. Hashmi, Meyn ACC’17]

State: x = (m, s), where m ∈ {ch, dis, id} denotes charging mode, and s ∈ [0, 1]
denotes the SoC.

The power delivery at state x depends only on charging mode:
U(ch, s) = Uch < 0, U(id, s) = 0, U(dis, s) = Udis > 0.

Nominal model: Xi
t = (M i

t , S
i
t) denote the state of ith battery at time t.

Sit+1 = Sit + hδch, if M
i
t = ch, Sit+1 = Sit − hδdis, if M

i
t = dis,

Sit+1 = Sit , if M
i
t = id, where h is the time step length, and δch and δdis charging

and discharging rates.

The dynamics of the first component are governed
by a “two coin-flip” randomized policy.

For example, in state (ch, s), the battery changes

its mode to idle with probability

(1− pch(s))× pid(s)/(pid(s) + pdis(s))
0

0.5

1
pid idle
pch charging
pdis discharging

0 1SoC 



Examples

Example: fleet of batteries

1000 batteries, tracking PJM RegD test signal:
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Unmodeled dynamics

[Chen, B., Meyn CDC’15, IEEE TAC’17]

Setting: 0.1% sampling, and
1 Heterogeneous population of loads
2 Load i overrides when QoS is out of bounds

0

0.5−10

−5

0

5

10

M
W

100 120110 130

op
t o

ut
 %

N = 300,000N = 30,000

100 120110 130

Closed-loop tracking

−100

−50

0

50

100

0.5

0

Output deviation Reference

t/hour t/hour

PI control: ζt = kP et + kIe
I
t , et = rt − yt, eIt =

∑t
s=0 es



Conclusions and Future Directions

Conclusions
Virtual storage from flexible loads

Approach: creating Virtual Energy Storage through direct control of flexible loads
- helping the grid while respecting user QoS

Challenges:

− Stability properties for IPD and myopic design?

− Information Architecture: ζt = f(?)
Different needs for communication, state estimation and forecast.

− Capacity estimation (time varying)

− Network constraints

− Resource optimization & learning
Integrating VES with traditional generation and batteries.

− Economic issues
Contract design, aggregators, markets . . .
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Conclusions
Virtual storage from flexible loads

Approach: creating Virtual Energy Storage through direct control of flexible loads
- helping the grid while respecting user QoS

Challenges:

− Stability properties for IPD and myopic design?

− Information Architecture: ζt = f(?)
Different needs for communication, state estimation and forecast.

− Capacity estimation (time varying)

− Network constraints

− Resource optimization & learning
Integrating VES with traditional generation and batteries.

− Economic issues
Contract design, aggregators, markets . . .
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Conclusions

Thank You!
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Y. Chen, A. Bušić, and S. Meyn. State Estimation and Mean Field Control with Application to Demand

Dispatch. 54rd IEEE Conference on Decision and Control (CDC) 2015.

J. L. Mathieu. Modeling, Analysis, and Control of Demand Response Resources. PhD thesis, Berkeley,

2012.

J. L. Mathieu, S. Koch, D. S. Callaway, State Estimation and Control of Electric Loads to Manage

Real-Time Energy Imbalance, IEEE Transactions on Power Systems, 28(1):430-440, 2013.

Markov processes:

I. Kontoyiannis and S. P. Meyn. Spectral theory and limit theorems for geometrically ergodic Markov

processes. Ann. Appl. Probab., 13:304–362, 2003.

I. Kontoyiannis and S. P. Meyn. Large deviations asymptotics and the spectral theory of multiplicatively

regular Markov processes. Electron. J. Probab., 10(3):61–123 (electronic), 2005.

E. Todorov. Linearly-solvable Markov decision problems. In B. Schölkopf, J. Platt, and T. Hoffman,

editors, Advances in Neural Information Processing Systems, (19) 1369–1376. MIT Press, Cambridge,
MA, 2007.



Conclusions and Future Directions

Mean Field Model
Linearized Dynamics

Mean-field model: µt+1 = µtPζt , yt = 〈µt,U〉

ζt = ft(y0, . . . , yt)

Linear state space model:
Φt+1 = AΦt +Bζt

γt = CΦt

Interpretations: |ζt| is small, and π denotes invariant measure for P0.

• Φt ∈ R|X|, a column vector with
Φt(x) ≈ µt(x)− π(x), x ∈ X

• γt ≈ yt − y0; deviation from nominal steady-state

• A = P T
0 , C = UT, and input dynamics linearized:

BT =
d

dζ
πPζ

∣∣∣
ζ=0
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