On the variational analysis for financial options with stochastic volatility

Frédéric Bonnans ${ }^{(1)}$ and Axel Kröner ${ }^{(2)}$
(1) CMAP, Ecole Polytechnique \& Inria Saclay
(2) U. Humboldt and Inria Saclay

CAESAR Conf., Palaiseau, 5-7 Sept 2018

Black and Scholes model: Given a financial asset $s(t)$, called the underlying, with dynamics

$$
\mathrm{d} s=r s(t) \mathrm{d} t+\sigma s(t) \mathrm{d} W(t),
$$

with volatility coefficient $\sigma \in \mathbb{R}$, interest rate $r \geq 0$, standard Brownian motion $W(t)$.

Value of European options are solutions of PDEs

$$
\left\{\begin{aligned}
-u_{t}-r x u_{x}-\frac{1}{2} x^{2} \sigma^{2} u_{x x}+r u & =0, & & (x, t) \in \times(0, T) \times \mathbb{R}_{+}, \\
u(x, T) & =u_{T}(x), & & x \in \mathbb{R}_{+}
\end{aligned}\right.
$$

with payoff u_{T} at final time T.

Payoff u_{T} given by call-option resp. put-option.
(i) Achdou-Tchou model

$$
\left\{\begin{array}{l}
\mathrm{d} s(t)=r s(t) \mathrm{d} t+\sigma(y(t)) s(t) \mathrm{d} W_{1}(t) \\
\mathrm{d} y(t)=\theta(\mu-y(t)) \mathrm{d} t+\nu \mathrm{d} W_{2}(t)
\end{array}\right.
$$

with interest rate r, volatility coefficient σ function of the factor y whose dynamics involve a parameter $\nu>0$, and positive constants θ and μ.
(ii) Heston model

$$
\left\{\begin{aligned}
\mathrm{d} s(t) & =s(t)\left(r \mathrm{~d} t+\sqrt{y(t)} \mathrm{d} W_{1}(t)\right) \\
\mathrm{d} y(t) & =\theta(\mu-y(t)) \mathrm{d} t+\nu \sqrt{y(t)} \mathrm{d} W_{2}(t)
\end{aligned}\right.
$$

- Y. Achdou and N. Tchou, ESAIM Math. Model. Numer. Anal., 2002.
- S. L. Heston, Rev. Financial Stud., 1993.

General model

$$
\mathrm{d} X(t)=b(t, X(t)) \mathrm{d} t+\sum_{i=1}^{n_{\sigma}} \sigma_{i}(t, X(t)) \mathrm{d} W_{i} .
$$

The associated elliptic operator

Second-order differential operator A corresponding to the general dynamics

$$
A u:=r u-b \cdot \nabla u-\frac{1}{2} \sum_{i, j=1}^{n_{\sigma}} \kappa_{i j} \sigma_{j}^{\top} u_{x x} \sigma_{i}
$$

Correlation coefficients $\kappa_{i j}:(0, T) \times \Omega \rightarrow \mathbb{R}$ between W_{i} and W_{j}, where for a partition (I, J) of $\{0, \ldots, N\}$ with $0 \in J$

$$
\Omega:=\prod_{k=0}^{N} \Omega_{k} ; \quad \text { with } \quad \Omega_{k}:= \begin{cases}\mathbb{R} & \text { when } k \in I, \tag{1}\\ (0, \infty) & \text { when } k \in J .\end{cases}
$$

Associated backward PDE

Parabolic PDE

$$
\left\{\begin{aligned}
-\dot{u}(t, x)+A(t, x) u(t, x) & =f(x, t), & & (t, x) \in(0, T) \times \Omega \\
u(T, x) & =u_{T}(x), & & x \in \Omega
\end{aligned}\right.
$$

Associated backward PDE

Parabolic PDE

$$
\left\{\begin{aligned}
-\dot{u}(t, x)+A(t, x) u(t, x) & =f(x, t), & & (t, x) \in(0, T) \times \Omega \\
u(T, x) & =u_{T}(x), & & x \in \Omega
\end{aligned}\right.
$$

We want to apply the Lions-Magenes theory for well-posedness of the PDE.

Regularity results by Lions and Magenes

Given a Gelfand triple pair $V \subset H=H^{*} \subset V^{*}$, set

$$
W(0, T):=\left\{u \in L^{2}(0, T ; V): \dot{u} \in L^{2}\left(0, T ; V^{*}\right)\right\} .
$$

Theorem (Lions-Magenes)

If $A(t) \in L^{\infty}\left(0, T ; L\left(V, V^{*}\right)\right)$ is uniform continuous and semi-coercive and $\left(f, u_{T}\right) \in L^{2}\left(0, T ; V^{*}\right) \times H$, then:

- The PDE has a solution in $W(0, T)$ and the first parabolic estimate holds: for some $c>0$ not depending on $\left(f, u_{T}\right)$:

$$
\begin{equation*}
\|u\|_{L^{2}(0, T ; V)}+\|u\|_{L^{\infty}(0, T ; H)} \leq c\left(\left\|u_{T}\right\|_{H}+\|f\|_{L^{2}\left(0, T ; V^{*}\right)}\right) . \tag{2}
\end{equation*}
$$

- Under the additional hypothesis of semi-symmetry and $\left(f, u_{T}\right) \in L^{2}(0, T ; H) \times V$ the second parabolic estimate holds: the solution $u \in W(0, T)$ belongs to $L^{\infty}(0, T ; V), \dot{u}$ belongs to $L^{2}(0, T ; H)$, and for some $c>0$ not depending on $\left(f, u_{T}\right)$:

$$
\begin{equation*}
\|u\|_{L^{\infty}(0, T ; V)}+\|\dot{u}\|_{L^{2}(0, T ; H)} \leq c\left(\left\|u_{T}\right\|_{V}+\|f\|_{L^{2}(0, T ; H)}\right) . \tag{3}
\end{equation*}
$$

Semi-symmetry hypothesis

($A(t)=A_{0}(t)+A_{1}(t), A_{0}(t)$ and $A_{1}(t)$ continuous linear mappings $V \rightarrow V^{*}$, $A_{0}(t)$ symmetric and continuously differentiable $V \rightarrow V^{*}$ w.r.t. t, $A_{1}(t)$ is measurable with range in H, and for positive numbers $\alpha_{0}, c_{A, 1}$:
(i) $\left\langle A_{0}(t) u, u\right\rangle_{V} \geq \alpha_{0}\|u\|_{V}^{2}, \quad$ for all $u \in V$, and a.a. $t \in[0, T]$,
(ii) $\left\|A_{1}(t) u\right\|_{H} \leq c_{A, 1}\|u\|_{V}, \quad$ for all $u \in V$, and a.a. $t \in[0, T]$,

Bilinear form

Weighting function $\rho: \Omega \rightarrow \mathbb{R}_{>0}$ of class C^{1}, let

$$
\begin{equation*}
L^{2, \rho}(\Omega):=\left\{v \in L^{0}(\Omega) ; \int_{\Omega} v(x)^{2} \rho(x) \mathrm{d} x<\infty\right\} \tag{5}
\end{equation*}
$$

with norm

$$
\begin{gather*}
\|v\|_{\rho}:=\left(\int_{\Omega} v(x)^{2} \rho(x) \mathrm{d} x\right)^{1 / 2} . \tag{6}\\
A u:=r u-b \cdot \nabla u-\frac{1}{2} \sum_{i, j=1}^{n_{\sigma}} \kappa_{i j} \sigma_{j}^{\top} u_{x x} \sigma_{i}, \tag{7}
\end{gather*}
$$

where

$$
\begin{equation*}
\sigma_{j}^{\top} u_{x x} \sigma_{i}:=\sum_{k, \ell=1}^{n_{\sigma}} \sigma_{k j} \frac{\partial u^{2}}{\partial x_{k} \partial x_{\ell}} \sigma_{\ell i} \tag{8}
\end{equation*}
$$

and for $v \in \mathcal{D}(\Omega)$:

$$
\begin{equation*}
a(u, v):=\int_{\Omega} A u(x) v(x) \rho(x) \mathrm{d} x \tag{9}
\end{equation*}
$$

Lie derivative along a vector field

Let Φ be a vector field over Ω (i.e., a mapping $\Omega \rightarrow \mathbb{R}^{n}$).
The associated Lie derivative of $u: \Omega \rightarrow \mathbb{R}$ is

$$
\begin{equation*}
\Phi[u](x):=\sum_{i=0}^{n} \Phi_{i}(x) \frac{\partial u}{\partial x_{i}}(x), \quad \text { for all } x \in \Omega . \tag{10}
\end{equation*}
$$

Bilinear form II

$$
\begin{equation*}
-\frac{1}{2} \int_{\Omega} \sigma_{j}^{\top} u_{x x} \sigma_{i} v \kappa_{i j} \rho=\sum_{p=0}^{3} a_{i j}^{p}(u, v) \tag{11}
\end{equation*}
$$

Bilinear form II

$$
\begin{equation*}
-\frac{1}{2} \int_{\Omega} \sigma_{j}^{\top} u_{x x} \sigma_{i} v \kappa_{i j} \rho=\sum_{p=0}^{3} a_{i j}^{p}(u, v) \tag{11}
\end{equation*}
$$

with

$$
\begin{equation*}
a_{i j}^{0}(u, v):=\frac{1}{2} \int_{\Omega} \sum_{k, \ell=1}^{n} \sigma_{k j} \sigma_{\ell i} \frac{\partial u}{\partial x_{k}} \frac{\partial v}{\partial x_{\ell}} \kappa_{i j} \rho=\frac{1}{2} \int_{\Omega} \sigma_{j}[u] \sigma_{i}[v] \kappa_{i j} \rho, \tag{12}
\end{equation*}
$$

Bilinear form II

$$
\begin{equation*}
-\frac{1}{2} \int_{\Omega} \sigma_{j}^{\top} u_{x x} \sigma_{i} v \kappa_{i j} \rho=\sum_{p=0}^{3} a_{i j}^{p}(u, v) \tag{11}
\end{equation*}
$$

with

$$
\begin{array}{r}
a_{i j}^{0}(u, v):=\frac{1}{2} \int_{\Omega} \sum_{k, \ell=1}^{n} \sigma_{k j} \sigma_{\ell i} \frac{\partial u}{\partial x_{k}} \frac{\partial v}{\partial x_{\ell}} \kappa_{i j} \rho=\frac{1}{2} \int_{\Omega} \sigma_{j}[u] \sigma_{i}[v] \kappa_{i j} \rho, \\
a_{i j}^{1}(u, v):=\frac{1}{2} \int_{\Omega} \sum_{k, \ell=1}^{n} \sigma_{k j} \sigma_{\ell i} \frac{\partial u}{\partial x_{k}} \frac{\partial\left(\kappa_{i j} \rho\right)}{\partial x_{\ell}} v=\frac{1}{2} \int_{\Omega} \sigma_{j}[u] \sigma_{i}\left[\kappa_{i j} \rho\right] \frac{v}{\rho} \rho, \tag{13}
\end{array}
$$

Bilinear form II

$$
\begin{equation*}
-\frac{1}{2} \int_{\Omega} \sigma_{j}^{\top} u_{x x} \sigma_{i} v \kappa_{i j} \rho=\sum_{p=0}^{3} a_{i j}^{p}(u, v) \tag{11}
\end{equation*}
$$

with

$$
\begin{gather*}
a_{i j}^{0}(u, v):=\frac{1}{2} \int_{\Omega} \sum_{k, \ell=1}^{n} \sigma_{k j} \sigma_{\ell i} \frac{\partial u}{\partial x_{k}} \frac{\partial v}{\partial x_{\ell}} \kappa_{i j} \rho=\frac{1}{2} \int_{\Omega} \sigma_{j}[u] \sigma_{i}[v] \kappa_{i j} \rho \tag{12}\\
a_{i j}^{1}(u, v):=\frac{1}{2} \int_{\Omega} \sum_{k, \ell=1}^{n} \sigma_{k j} \sigma_{\ell i} \frac{\partial u}{\partial x_{k}} \frac{\partial\left(\kappa_{i j} \rho\right)}{\partial x_{\ell}} v=\frac{1}{2} \int_{\Omega} \sigma_{j}[u] \sigma_{i}\left[\kappa_{i j} \rho\right] \frac{v}{\rho} \rho \tag{13}\\
a_{i j}^{2}(u, v):=\frac{1}{2} \int_{\Omega} \sum_{k, \ell=1}^{n} \sigma_{k j} \frac{\partial\left(\sigma_{\ell i}\right)}{\partial x_{\ell}} \frac{\partial u}{\partial x_{k}} v \kappa_{i j} \rho=\frac{1}{2} \int_{\Omega} \sigma_{j}[u]\left(\operatorname{div} \sigma_{i}\right) v \kappa_{i j} \rho \tag{14}
\end{gather*}
$$

Bilinear form II

$$
\begin{equation*}
-\frac{1}{2} \int_{\Omega} \sigma_{j}^{\top} u_{x x} \sigma_{i} v \kappa_{i j} \rho=\sum_{p=0}^{3} a_{i j}^{p}(u, v) \tag{11}
\end{equation*}
$$

with

$$
\begin{gather*}
a_{i j}^{0}(u, v):=\frac{1}{2} \int_{\Omega} \sum_{k, \ell=1}^{n} \sigma_{k j} \sigma_{\ell i} \frac{\partial u}{\partial x_{k}} \frac{\partial v}{\partial x_{\ell}} \kappa_{i j} \rho=\frac{1}{2} \int_{\Omega} \sigma_{j}[u] \sigma_{i}[v] \kappa_{i j} \rho \tag{12}\\
a_{i j}^{1}(u, v):=\frac{1}{2} \int_{\Omega} \sum_{k, \ell=1}^{n} \sigma_{k j} \sigma_{\ell i} \frac{\partial u}{\partial x_{k}} \frac{\partial\left(\kappa_{i j} \rho\right)}{\partial x_{\ell}} v=\frac{1}{2} \int_{\Omega} \sigma_{j}[u] \sigma_{i}\left[\kappa_{i j} \rho\right] \frac{v}{\rho} \rho \tag{13}\\
a_{i j}^{2}(u, v):=\frac{1}{2} \int_{\Omega} \sum_{k, \ell=1}^{n} \sigma_{k j} \frac{\partial\left(\sigma_{\ell i}\right)}{\partial x_{\ell}} \frac{\partial u}{\partial x_{k}} v \kappa_{i j} \rho=\frac{1}{2} \int_{\Omega} \sigma_{j}[u]\left(\operatorname{div} \sigma_{i}\right) v \kappa_{i j} \rho \tag{14}\\
a_{i j}^{3}(u, v):=\frac{1}{2} \int_{\Omega} \sum_{k, \ell=1}^{n} \frac{\partial\left(\sigma_{k j}\right)}{\partial x_{\ell}} \sigma_{\ell i} \frac{\partial u}{\partial x_{k}} v \kappa_{i j} \rho=\frac{1}{2} \int_{\Omega} \sum_{k=1}^{n} \sigma_{i}\left[\sigma_{k j}\right] \frac{\partial u}{\partial x_{k}} v \kappa_{i j} \rho \tag{15}
\end{gather*}
$$

Bilinear form

Contributions of the first and zero order terms resp. we get

$$
\begin{equation*}
a^{4}(u, v):=-\int_{\Omega} b[u] v \rho ; \quad a^{5}(u, v):=\int_{\Omega} r u v \rho . \tag{16}
\end{equation*}
$$

Set

$$
\begin{equation*}
a^{p}:=\sum_{i, j=1}^{n_{\sigma}} a_{i j}^{p}, \quad p=0, \ldots, 3 \tag{17}
\end{equation*}
$$

The bilinear form associated with the above PDE is

$$
\begin{equation*}
a(u, v):=\sum_{p=0}^{5} a^{p}(u, v) . \tag{18}
\end{equation*}
$$

Semicoercivity of the principal term

For $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n_{\sigma}}\right)$ the principal term of the bilinear form a is given by

$$
\begin{equation*}
a^{0}(u, v)=\sum_{i, j=1}^{n_{\sigma}} \int_{\Omega} \sigma_{j}[u] \sigma_{i}[v] \kappa_{i j} \rho=\int_{\Omega} \nabla u^{\top} \sigma \kappa \sigma^{\top} \nabla v \rho . \tag{19}
\end{equation*}
$$

Semicoercivity of the principal term

For $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n_{\sigma}}\right)$ the principal term of the bilinear form a is given by

$$
\begin{equation*}
a^{0}(u, v)=\sum_{i, j=1}^{n_{\sigma}} \int_{\Omega} \sigma_{j}[u] \sigma_{i}[v] \kappa_{i j} \rho=\int_{\Omega} \nabla u^{\top} \sigma \kappa \sigma^{\top} \nabla v \rho . \tag{19}
\end{equation*}
$$

Since $\kappa \succeq 0$, the above integrand is nonnegative when $u=v$; therefore, $a^{0}(u, u) \geq 0$. When $\kappa=\mathrm{id}$ we have that

$$
\begin{equation*}
a^{00}(u, u):=\int_{\Omega}\left|\sigma^{\top} \nabla u\right|^{2} \rho=a^{0}(u, u) . \tag{20}
\end{equation*}
$$

Semicoercivity of the principal term

For $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n_{\sigma}}\right)$ the principal term of the bilinear form a is given by

$$
\begin{equation*}
a^{0}(u, v)=\sum_{i, j=1}^{n_{\sigma}} \int_{\Omega} \sigma_{j}[u] \sigma_{i}[v] \kappa_{i j} \rho=\int_{\Omega} \nabla u^{\top} \sigma \kappa \sigma^{\top} \nabla v \rho . \tag{19}
\end{equation*}
$$

Since $\kappa \succeq 0$, the above integrand is nonnegative when $u=v$; therefore, $a^{0}(u, u) \geq 0$. When $\kappa=\mathrm{id}$ we have that

$$
\begin{equation*}
a^{00}(u, u):=\int_{\Omega}\left|\sigma^{\top} \nabla u\right|^{2} \rho=a^{0}(u, u) . \tag{20}
\end{equation*}
$$

In the presence of correlations it is natural to assume that we have a coercivity of the same order. That is, we assume that

$$
\begin{equation*}
\text { For some } \gamma \in(0,1]: \quad \sigma \kappa \sigma^{\top} \succeq \gamma \sigma \sigma^{\top}, \quad \text { for all }(t, x) \in(0, T) \times \Omega \text {. } \tag{21}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
a^{0}(u, u) \geq \gamma a^{00}(u, u) . \tag{22}
\end{equation*}
$$

Choice of Gelfand triple

Pair $V \subset H$ of Hilbert spaces, with dense inclusion.
For some measurable function $h: \Omega \rightarrow \mathbb{R}_{+}$to be specified later we define

$$
\left\{\begin{array}{l}
H:=\left\{v \in L^{0}(\Omega) ; \quad h v \in L^{2, \rho}(\Omega)\right\} \tag{23}\\
\mathcal{V}:=\left\{v \in H ; \quad \sigma_{i}[v] \in L^{2, \rho}(\Omega), \quad i=1, \ldots, n_{\sigma}\right\} \\
V:=\{\operatorname{closure} \text { of } \mathcal{D}(\Omega) \text { in } \mathcal{V}\}
\end{array}\right.
$$

endowed with the natural norms,

$$
\begin{equation*}
\|v\|_{H}:=\|h v\|_{\rho} ; \quad\|u\|_{V}^{2}:=a^{00}(u, u)+\|u\|_{H}^{2} \tag{24}
\end{equation*}
$$

Continuity of a^{1}

$$
\begin{equation*}
a_{i j}^{1}(u, v)=\frac{1}{2} \int_{\Omega} \sigma_{j}[u] \sigma_{i}\left[\kappa_{i j} \rho\right] \frac{v}{\rho} \rho, \tag{25}
\end{equation*}
$$

and so,

$$
\begin{align*}
\left|a_{i j}^{1}(u, v)\right| & \leq \sum_{j=1}^{n_{\sigma}}\left\|\sigma_{j}[u]\right\|_{\rho} \sum_{i=1}^{n_{\sigma}}\left\|\rho^{-1} \sigma_{i}\left[\kappa_{i j} \rho\right] v\right\|_{\rho} \\
& \leq C\|v\|_{H} \sum_{j=1}^{n_{\sigma}}\left\|\sigma_{j}[u]\right\|_{\rho} \tag{26}
\end{align*}
$$

whenever

$$
\begin{equation*}
\rho^{-1} \sum_{i}\left|\sigma_{i}\left[\kappa_{i j} \rho\right]\right| \leq C^{\prime} h \tag{27}
\end{equation*}
$$

It suffices that

$$
\begin{equation*}
\sum_{i}\left|\sigma_{i}\left[\kappa_{i j}\right]\right|+\rho^{-1}\left|\sigma_{i}[\rho]\right| \leq C^{\prime \prime} h \tag{28}
\end{equation*}
$$

Continuity of a^{2}

$$
\begin{equation*}
a_{i j}^{2}(u, v)=\frac{1}{2} \int_{\Omega} \sigma_{j}[u]\left(\operatorname{div} \sigma_{i}\right) v \kappa_{i j} \rho, \tag{29}
\end{equation*}
$$

and so,

$$
\begin{align*}
\left|a_{i j}^{2}(u, v)\right| & \leq \sum_{j=1}^{n_{\sigma}}\left\|\sigma_{j}[u]\right\|_{\rho} \sum_{i=1}^{n_{\sigma}}\left\|\operatorname{div} \sigma_{i} v\right\|_{\rho} \tag{30}\\
& \leq C\|v\|_{H} \sum_{j=1}^{n_{\sigma}}\left\|\sigma_{j}[u]\right\|_{\rho},
\end{align*}
$$

whenever

$$
\begin{equation*}
\sum_{i}\left|\operatorname{div} \sigma_{i}\right| \leq C^{\prime} h . \tag{31}
\end{equation*}
$$

Continuity of $a^{34}=a^{3}+a^{4}$

$$
\begin{equation*}
a_{i j}^{34}(u, v)=\frac{1}{2} \int_{\Omega} \sum_{k=1}^{n} \sigma_{i}\left[\sigma_{k j}\right] \frac{\partial u}{\partial x_{k}} v \kappa_{i j} \rho-\int_{\Omega} b[u] v \rho=\int_{\Omega} q[u] v \rho, \tag{32}
\end{equation*}
$$

At first sight, the continuity analysis needs a decomposition of the form

$$
\begin{equation*}
q=\sum_{k=1}^{n_{\sigma}} \eta_{k} \sigma_{k} \tag{33}
\end{equation*}
$$

where η is of minimum Euclidean norm, and then we get

$$
\begin{equation*}
\left|a^{34}\right| \leq C \sum_{j=1}^{n_{\sigma}}\left\|\sigma_{j}[u]\right\|_{\rho}\left\|\eta_{k} v\right\|_{2, \rho} \leq\|v\|_{H} \sum_{j=1}^{n_{\sigma}}\left\|\sigma_{j}[u]\right\|_{\rho}, \tag{34}
\end{equation*}
$$

whenever

$$
\begin{equation*}
|\eta| \leq C h . \tag{35}
\end{equation*}
$$

Continuity of a^{5}

Since

$$
\begin{equation*}
a^{5}(u, v):=\int_{\Omega} r u v \rho, \tag{36}
\end{equation*}
$$

it is enough that

$$
\begin{equation*}
\sqrt{|r|} \leq C h . \tag{37}
\end{equation*}
$$

Synthesis for h

Factorizing the terms in a^{1} and a^{2} it suffices that for a.a. $x \in \Omega$:

$$
\begin{equation*}
\sum_{i}\left(\left|\sigma_{i}\left[\kappa_{i j}\right]\right|+\frac{\left|\sigma_{i}[\rho]\right|}{\rho}+\left|\operatorname{div} \sigma_{i}\right|\right)+|\eta|+\sqrt{|r|} \leq C h . \tag{38}
\end{equation*}
$$

Semi coercivity

By construction, for $i \in\{1,2,34,5\}$

$$
\begin{equation*}
\left|a^{i}(u, v)\right| \leq C_{i}\|u\|_{V}\|v\|_{H} \tag{39}
\end{equation*}
$$

and so,

$$
\begin{align*}
a(u, u) & \geq \int_{\Omega}\left|\sigma^{\top} \nabla u\right|^{2} \rho-C\|u\|_{V}\|u\|_{H} \tag{40}\\
& =\|u\|_{V}^{2}-\|u\|_{H}^{2}-C\|u\|_{V}\|u\|_{H} .
\end{align*}
$$

The semicoercivity follows using Young's inequality.

Can we do better ?

Sometimes YES: using the notion of commutators of vector fields.

Commutators of vector fields

Let $u: \Omega \rightarrow \mathbb{R}$ be of class C^{2}. Let Φ and Ψ be two C^{1} vector fields over Ω, both of class. Remember the Lie derivative

$$
\begin{equation*}
\Phi[u](x):=\sum_{i=0}^{n} \Phi_{i}(x) \frac{\partial u}{\partial x_{i}}(x), \quad \text { for all } x \in \Omega . \tag{41}
\end{equation*}
$$

Commutators of vector fields

Let $u: \Omega \rightarrow \mathbb{R}$ be of class C^{2}. Let Φ and Ψ be two C^{1} vector fields over Ω, both of class. Remember the Lie derivative

$$
\begin{equation*}
\Phi[u](x):=\sum_{i=0}^{n} \Phi_{i}(x) \frac{\partial u}{\partial x_{i}}(x), \quad \text { for all } x \in \Omega . \tag{41}
\end{equation*}
$$

Commutator of Φ and Ψ :

$$
\begin{equation*}
[\Phi, \Psi][u]:=\Phi[\Psi[u]]-\Psi[\Phi[u]] . \tag{42}
\end{equation*}
$$

Commutators of vector fields

Let $u: \Omega \rightarrow \mathbb{R}$ be of class C^{2}. Let Φ and Ψ be two C^{1} vector fields over Ω, both of class. Remember the Lie derivative

$$
\begin{equation*}
\Phi[u](x):=\sum_{i=0}^{n} \Phi_{i}(x) \frac{\partial u}{\partial x_{i}}(x), \quad \text { for all } x \in \Omega . \tag{41}
\end{equation*}
$$

Commutator of Φ and Ψ :

$$
\begin{equation*}
[\Phi, \Psi][u]:=\Phi[\Psi[u]]-\Psi[\Phi[u]] . \tag{42}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\Phi[\Psi[u]]=\sum_{i=1}^{n} \Phi_{i} \frac{\partial(\Psi u)}{\partial x_{i}}=\sum_{i=1}^{n} \Phi_{i}\left(\sum_{k=1}^{n} \frac{\partial \Psi_{k}}{\partial x_{i}} \frac{\partial u}{\partial x_{k}}+\Psi_{k} \frac{\partial^{2} u}{\partial x_{k} \partial x_{i}}\right) . \tag{43}
\end{equation*}
$$

Commutators of vector fields

Let $u: \Omega \rightarrow \mathbb{R}$ be of class C^{2}. Let Φ and Ψ be two C^{1} vector fields over Ω, both of class. Remember the Lie derivative

$$
\begin{equation*}
\Phi[u](x):=\sum_{i=0}^{n} \Phi_{i}(x) \frac{\partial u}{\partial x_{i}}(x), \quad \text { for all } x \in \Omega . \tag{41}
\end{equation*}
$$

Commutator of Φ and Ψ :

$$
\begin{equation*}
[\Phi, \Psi][u]:=\Phi[\Psi[u]]-\Psi[\Phi[u]] . \tag{42}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\Phi[\Psi[u]]=\sum_{i=1}^{n} \Phi_{i} \frac{\partial(\Psi u)}{\partial x_{i}}=\sum_{i=1}^{n} \Phi_{i}\left(\sum_{k=1}^{n} \frac{\partial \Psi_{k}}{\partial x_{i}} \frac{\partial u}{\partial x_{k}}+\Psi_{k} \frac{\partial^{2} u}{\partial x_{k} \partial x_{i}}\right) . \tag{43}
\end{equation*}
$$

So, the expression of the commutator is

$$
\begin{equation*}
[\Phi, \Psi][u]=\sum_{k=1}^{n}\left(\sum_{i=1}^{n} \Phi_{i} \frac{\partial \Psi_{k}}{\partial x_{i}}-\Psi_{i} \frac{\partial \Phi_{k}}{\partial x_{i}}\right) \frac{\partial u}{\partial x_{k}} . \tag{44}
\end{equation*}
$$

This is the first-order differential operator associated with the Lie bracket of Φ, Ψ.

The adjoint to a vector field

Given two vector fields Φ and Ψ over Ω, define the spaces

$$
\begin{align*}
\mathcal{V}(\Phi, \Psi) & :=\{v \in H ; \quad \Phi[v], \Psi[v] \in H\}, \tag{45}\\
V(\Phi, \Psi) & :=\{\text { closure of } \mathcal{D}(\Omega) \text { in } \mathcal{V}(\Phi, \Psi)\} . \tag{46}
\end{align*}
$$

The adjoint to a vector field

Given two vector fields Φ and Ψ over Ω, define the spaces

$$
\begin{align*}
\mathcal{V}(\Phi, \Psi) & :=\{v \in H ; \quad \Phi[v], \Psi[v] \in H\}, \tag{45}\\
V(\Phi, \Psi) & :=\{\text { closure of } \mathcal{D}(\Omega) \text { in } \mathcal{V}(\Phi, \Psi)\} . \tag{46}
\end{align*}
$$

We define the adjoint Φ^{\top} of Φ (viewed as an operator over say $C^{\infty}(\Omega, \mathbb{R})$), the latter being endowed with the scalar product of $L^{2, \rho}(\Omega)$), by

$$
\begin{equation*}
\left\langle\Phi^{\top}[u], v\right\rangle_{\rho}=\langle u, \Phi[v]\rangle_{\rho} \quad \text { for all } u, v \in \mathcal{D}(\Omega), \tag{47}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle_{\rho}$ denotes the scalar product in $L^{2, \rho}(\Omega)$. Thus, there holds the identity

$$
\begin{equation*}
\int_{\Omega} \Phi^{\top}[u](x) v(x) \rho(x) \mathrm{d} x=\int_{\Omega} u(x) \Phi[v](x) \rho(x) \mathrm{d} x \quad \text { for all } u, v \in \mathcal{D}(\Omega) . \tag{48}
\end{equation*}
$$

The adjoint to a vector field

Given two vector fields Φ and Ψ over Ω, define the spaces

$$
\begin{align*}
\mathcal{V}(\Phi, \Psi) & :=\{v \in H ; \quad \Phi[v], \Psi[v] \in H\}, \tag{45}\\
V(\Phi, \Psi) & :=\{\text { closure of } \mathcal{D}(\Omega) \text { in } \mathcal{V}(\Phi, \Psi)\} . \tag{46}
\end{align*}
$$

We define the adjoint Φ^{\top} of Φ (viewed as an operator over say $C^{\infty}(\Omega, \mathbb{R})$), the latter being endowed with the scalar product of $L^{2, \rho}(\Omega)$), by

$$
\begin{equation*}
\left\langle\Phi^{\top}[u], v\right\rangle_{\rho}=\langle u, \Phi[v]\rangle_{\rho} \quad \text { for all } u, v \in \mathcal{D}(\Omega), \tag{47}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle_{\rho}$ denotes the scalar product in $L^{2, \rho}(\Omega)$. Thus, there holds the identity

$$
\begin{equation*}
\int_{\Omega} \Phi^{\top}[u](x) v(x) \rho(x) \mathrm{d} x=\int_{\Omega} u(x) \Phi[v](x) \rho(x) \mathrm{d} x \quad \text { for all } u, v \in \mathcal{D}(\Omega) . \tag{48}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
\int_{\Omega} u \sum_{i=1}^{n} \Phi_{i} \frac{\partial v}{\partial x_{i}} \rho \mathrm{~d} x & =-\sum_{i=1}^{n} \int_{\Omega} v \frac{\partial}{\partial x_{i}}\left(u \rho \Phi_{i}\right) \mathrm{d} x \\
& =-\sum_{i=1}^{n} \int_{\Omega} v\left(\frac{\partial}{\partial x_{i}}\left(u \Phi_{i}\right)+\frac{u}{\rho} \Phi_{i} \frac{\partial \rho}{\partial x_{i}}\right) \rho \mathrm{d} x . \tag{49}
\end{align*}
$$

The adjoint to a vector field II

Hence,

$$
\begin{equation*}
\Phi^{\top}[u]=-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(u \Phi_{i}\right)-u \Phi_{i} \frac{\partial \rho}{\partial x_{i}} / \rho=-u \operatorname{div} \Phi-\Phi[u]-u \Phi[\rho] / \rho . \tag{50}
\end{equation*}
$$

We obtain that

$$
\begin{equation*}
\Phi[u]+\Phi^{\top}[u]+G_{\rho}(\Phi) u=0, \tag{51}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{\rho}(\Phi):=\operatorname{div} \Phi+\frac{\Phi[\rho]}{\rho} . \tag{52}
\end{equation*}
$$

Continuity of the bilinear form associated with the commutator

Setting, for v and w in $V(\Phi, \Psi)$:

$$
\begin{equation*}
\Delta(u, v):=\int_{\Omega}[\Phi, \Psi][u](x) v(x) \rho(x) \mathrm{d} x, \tag{53}
\end{equation*}
$$

we have

$$
\begin{align*}
\Delta(u, v) & \left.=\int_{\Omega}(\Phi[\Psi[u]] v-\Psi[\Phi[u]] v) \rho \mathrm{d} x=\int_{\Omega} \Psi[u] \Phi^{\top}[v]-\Phi[u] \Psi^{\top}[v]\right) \rho \mathrm{d} x \\
& =\int_{\Omega}(\Phi[u] \Psi[v]-\Psi[u] \Phi[v]) \rho \mathrm{d} x+\int_{\Omega}\left(\Phi[u] G_{\rho}(\Psi) v-\Psi[u] G_{\rho}(\Phi) v\right) \rho \mathrm{d} x . \tag{54}
\end{align*}
$$

Lemma

For $\Delta(\cdot, \cdot)$ to be a continuous bilinear form on $V(\Phi, \Psi)$, it suffices that, for some $c_{\Delta}>0$:

$$
\begin{equation*}
\left|G_{\rho}(\Phi)\right|+\left|G_{\rho}(\Psi)\right| \leq c_{\Delta} h \quad \text { a.e., } \tag{55}
\end{equation*}
$$

and we have then:

$$
\begin{equation*}
|\Delta(u, v)| \leq\|\Psi[u]\|_{\rho}\left(\|\Phi[v]\|_{\rho}+c_{\Delta}\|v\|_{H}\right)+\|\Phi[u]\|_{\rho}\left(\|\Psi[v]\|_{\rho}+c_{\Delta}\|v\|_{H}\right) . \tag{56}
\end{equation*}
$$

Lemma

For $\Delta(\cdot, \cdot)$ to be a continuous bilinear form on $V(\Phi, \Psi)$, it suffices that, for some $c_{\Delta}>0$:

$$
\begin{equation*}
\left|G_{\rho}(\Phi)\right|+\left|G_{\rho}(\Psi)\right| \leq c_{\Delta} h \quad \text { a.e. } \tag{55}
\end{equation*}
$$ and we have then:

$$
\begin{equation*}
|\Delta(u, v)| \leq\|\Psi[u]\|_{\rho}\left(\|\Phi[v]\|_{\rho}+c_{\Delta}\|v\|_{H}\right)+\|\Phi[u]\|_{\rho}\left(\|\Psi[v]\|_{\rho}+c_{\Delta}\|v\|_{H}\right) . \tag{56}
\end{equation*}
$$

We apply the previous results with $\Phi:=\sigma_{i}, \Psi:=\sigma_{j}$. Set for v, w in V :

$$
\begin{equation*}
\Delta_{i j}(u, v):=\int_{\Omega}\left[\sigma_{i}, \sigma_{j}\right][u](x) v(x) \rho(x) \mathrm{d} x, \quad i, j=1, \ldots, n_{\sigma} . \tag{57}
\end{equation*}
$$

We recall the definition $V=\{$ closure of $\mathcal{D}(\Omega)$ in $\mathcal{V}\}$.

Corollary

Let (55) hold. Then the $\Delta_{i j}(u, v), i, j=1, \ldots, n_{\sigma}$, are continuous bilinear forms over V.

Redefining the space H

We now decompose q in the form

$$
\begin{equation*}
q=\sum_{k=1}^{n_{\sigma}} \eta_{k}^{\prime \prime} \sigma_{k}+\sum_{1 \leq i<j \leq n_{\sigma}} \eta_{i j}^{\prime}\left[\sigma_{i}, \sigma_{j}\right] \quad \text { a.e. } \tag{58}
\end{equation*}
$$

We assume that η^{\prime} and $\eta^{\prime \prime}$ are measurable functions over $[0, T] \times \Omega$, that η^{\prime} is weakly differentiable, and that for some $c_{\eta}^{\prime}>0$:

$$
\begin{equation*}
h_{\eta}^{\prime} \leq c_{\eta}^{\prime} h \text {, where } h_{\eta}^{\prime}:=\left|\eta^{\prime \prime}\right|+\sum_{i, j=1}^{N}\left|\sigma_{i}\left[\eta_{i j}^{\prime}\right]\right| \quad \text { a.e., } \eta^{\prime} \in L^{\infty}(\Omega) . \tag{59}
\end{equation*}
$$

Lemma

Let (28), (31), (35), and (59) hold. Then the bilinear form $a(u, v)$ defined in (18) is both (i) continuous and (ii) semi-coercive over V.

Proof of (i).

(i) We only have to analyze the contribution of terms of the form setting $w:=\eta_{i j}^{\prime} v$ and taking here $(\Phi, \Psi)=\left(\sigma_{i}, \sigma_{j}\right)$, we get that

$$
\begin{equation*}
\int_{\Omega} \eta_{i j}^{\prime}\left[\sigma_{i}, \sigma_{j}\right)[u] v \rho=\Delta(u, w) \tag{60}
\end{equation*}
$$

where $\Delta(\cdot, \cdot)$ was defined in (53). Combining with lemma 1 , we obtain

$$
\begin{align*}
\left|\Delta_{i j}(u, w)\right| \leq & \left\|\sigma_{j}[u]\right\|_{\rho}\left(\left\|\sigma_{i}[w]\right\|_{\rho}+c_{\sigma}\left\|\eta_{i j}^{\prime}\right\|_{\infty}\|v\|_{H}\right) \tag{61}\\
& +\left\|\sigma_{i}[u]\right\|_{\rho}\left(\left\|\sigma_{j}[w]\right\|_{\rho}+c_{\sigma}\left\|\eta_{i j}^{\prime}\right\|_{\infty}\|v\|_{H}\right) .
\end{align*}
$$

Since

$$
\begin{equation*}
\sigma_{i}[w]=\sigma_{i}\left[\eta_{i j}^{\prime} v\right]=\eta_{i j}^{\prime} \sigma_{i}[v]+\sigma_{i}\left[\eta_{i j}^{\prime}\right] v, \tag{62}
\end{equation*}
$$

by (59):

$$
\begin{equation*}
\left\|\sigma_{i}[w]\right\|_{\rho} \leq\left\|\eta_{i j}^{\prime}\right\|_{\infty}\left\|\sigma_{i}[v]\right\|_{\rho}+\left\|\sigma_{i}\left[\eta_{i j}^{\prime}\right] v\right\|_{\rho} \leq\left\|\eta_{i j}^{\prime}\right\|_{\infty}\left\|\sigma_{i}[v]\right\|_{\rho}+c_{\eta}\|v\|_{H} \tag{63}
\end{equation*}
$$

Combining these inequalities, point (i) follows.

Proof of (ii).

Use $u=v$ in (62) and (54). We find after cancellation in (54) that

$$
\begin{align*}
\Delta_{i j}\left(u, \eta_{i j}^{\prime} u\right)= & \int_{\Omega} u\left(\sigma_{i}[u] \sigma_{j}\left[\eta_{i j}^{\prime}\right]-\sigma_{j}[u] \sigma_{i}\left(\eta_{i j}^{\prime}\right)\right) \rho \\
& +\int_{\Omega}\left(\sigma_{i}[u] G_{\rho}\left(\sigma_{j}\right)-\sigma_{j}[u] G_{\rho}\left(\sigma_{i}\right)\right) \eta_{i j}^{\prime} u \rho \tag{64}
\end{align*}
$$

By (59), an upper bound for the absolute value of the first integral is

$$
\begin{equation*}
\left(\left\|\sigma_{i}[u]\right\|_{\rho}+\left\|\sigma_{j}[u]\right\|_{\rho}\right)\|h u\|_{\rho} \leq 2\|u\|_{\mathcal{V}}\|u\|_{H} . \tag{65}
\end{equation*}
$$

By the same technique, we get $\left|\Delta_{i j}\left(u, \eta_{i j}^{\prime} u\right)\right| \leq 4\|u\|_{\mathcal{V}}\|u\|_{H}$. We finally have that for some $c>0$

$$
\begin{align*}
a(u, u) & \geq a_{0}(u, u)-c\|u\|_{\mathcal{V}}\|u\|_{H} \\
& \geq a_{0}(u, u)-\frac{1}{2}\|u\|_{\mathcal{V}}^{2}-\frac{1}{2} c^{2}\|u\|_{H}^{2} \tag{66}\\
& =\frac{1}{2}\|u\|_{\mathcal{V}}^{2}-\frac{1}{2}\left(c^{2}+1\right)\|u\|_{H}^{2}
\end{align*}
$$

The conclusion follows.
Remark: Similar statement in the case of the second parabolic estimate.

Application to stochastic volatility with multiple factor

$$
\begin{align*}
\mathrm{d} s & =r s(t) \mathrm{d} t+\sum_{k=1}^{N}\left|y_{k}(t)\right|^{\gamma_{k}} s^{\beta_{k}}(t) \mathrm{d} W_{k}(t), \tag{67}\\
\mathrm{d} y_{k} & =\theta_{k}\left(\mu_{k}-y_{k}(t)\right) \mathrm{d} t+\nu_{k}\left|y_{k}(t)\right|^{1-\gamma_{k}} \mathrm{~d} W_{N+k}(t), \quad k=1, \ldots, N .
\end{align*}
$$

We assume that κ is constant and

$$
\begin{equation*}
\beta_{k} \in(0,1] ; \quad \nu_{k}>0 ; \quad \gamma_{k} \in(0, \infty) . \tag{68}
\end{equation*}
$$

Examples when $\beta_{k}=1$: Heston $\gamma_{k}=\frac{1}{2}$, Tchou-Achdou $\gamma_{k}=1$.
Assume that

$$
\begin{equation*}
s \rho_{s} / \rho \in L^{\infty} ; \rho_{k} / \rho \in L^{\infty} \text { if } \Omega_{k}=\mathbb{R} ; y_{k} \rho_{k} / \rho \in L^{\infty} \text { if } \Omega_{k}=\mathbb{R}_{+} . \tag{69}
\end{equation*}
$$

Application to stochastic volatility with multiple factors

We get, assuming that $\gamma_{1} \neq 0$, when all $y_{k} \in \mathbb{R}$, we can choose h^{\prime} as

$$
\begin{align*}
h^{\prime}:= & 1+\sum_{k=1}^{N}\left(\left|y_{k}\right|^{\gamma_{k}}\left(1+s^{\beta_{k}-1}\right)+\left(1-\gamma_{k}\right)\left|y_{k}\right|^{-\gamma_{k}}+\left|y_{k}\right|^{\gamma_{k}-1}\right) \\
& +\sum_{k \in I}\left|y_{k}\right|^{1-\gamma_{k}}+\sum_{k \in J}\left|y_{k}\right|^{-\gamma_{k}} . \tag{70}
\end{align*}
$$

Application to stochastic volatility with multiple factors

We get, assuming that $\gamma_{1} \neq 0$, when all $y_{k} \in \mathbb{R}$, we can choose h^{\prime} as

$$
\begin{align*}
h^{\prime}:= & 1+\sum_{k=1}^{N}\left(\left|y_{k}\right|^{\gamma_{k}}\left(1+s^{\beta_{k}-1}\right)+\left(1-\gamma_{k}\right)\left|y_{k}\right|^{-\gamma_{k}}+\left|y_{k}\right|^{\gamma_{k}-1}\right) \\
& +\sum_{k \in I}\left|y_{k}\right|^{1-\gamma_{k}}+\sum_{k \in J}\left|y_{k}\right|^{-\gamma_{k}} . \tag{70}
\end{align*}
$$

Without the commutator analysis we would get $h=h^{\prime}+h^{\prime \prime}$, where

$$
\begin{equation*}
h^{\prime \prime}:=r s^{1-\beta_{1}} /\left|y_{1}\right|^{\gamma_{1}}+\sum_{k} \nu_{k}\left|\hat{\kappa}_{k}\right|\left|y_{k}\right|^{-\gamma_{k}} . \tag{71}
\end{equation*}
$$

So, we have

$$
\begin{equation*}
h^{\prime} \leq h, \tag{72}
\end{equation*}
$$

meaning that it is advantageous to use the commutator analysis, due to the term $r s^{1-\beta_{1}} /\left|y_{1}\right|^{\gamma_{1}}$ in particular.
The second term has as contribution only for $\gamma_{k} \neq 1$ (since otherwise h^{\prime} includes a term of the same order).

Heston case

For the generalized multiple factor Heston model (GMH), i.e. when $\gamma_{k}=1 / 2$, $k=1$ to N, we can take h equal to

$$
\begin{equation*}
h_{H}^{\prime}:=1+\sum_{k=1}^{N}\left(\left|y_{k}\right|^{\frac{1}{2}}\left(1+s^{\beta_{k}-1}\right)+\left|y_{k}\right|^{-\frac{1}{2}}\right), \tag{73}
\end{equation*}
$$

when the commutator analysis is used, and when it is not, take h equal to

$$
\begin{equation*}
h_{H}:=h_{H}+r s^{1-\beta_{1}}\left|y_{1}\right|^{-\frac{1}{2}} . \tag{74}
\end{equation*}
$$

The original Heston model is for $k=1$ and $\beta_{1}=1$.
So we get an improvement only when $\beta_{k} \neq 1$!

Weighting functions: Heston case

Lemma

(i) For the GMH model, using the commutator analysis, in case of a call option with strike K, meaning that $u_{T}(s)=(s-K)_{+}$, we can take $\rho=\rho_{\text {call, }}$ with

$$
\begin{equation*}
\rho_{\text {call }}(s, y):=\left(1+s^{\varepsilon^{\prime \prime}+3}\right)^{-1} \Pi_{k=1}^{N} y_{k}^{\varepsilon^{\prime}}\left(1+y_{k}^{\varepsilon+2}\right)^{-1} . \tag{75}
\end{equation*}
$$

(ii) For a put option with strike $K>0$, we can take $\rho=\rho_{\text {put }}$, with

$$
\begin{equation*}
\rho_{p u t}(s, y):=\Pi_{k=1}^{N} y_{k}^{\varepsilon^{\prime}}\left(1+y_{k}^{\varepsilon+2}\right)^{-1} . \tag{76}
\end{equation*}
$$

Perspectives

(1) American option
(2) Extension to other classes
© Associated Fokker-Planck equations

- Degenerate cases: Asian options

References

Y. Achdou and N. Tchou, ESAIM Math. Model. Numer. Anal., 2002.
Y. Achdou, B. Franchi, and N. Tchou, Math. Comp., 74 (2005).
F. Bonnans, A. Kröner. Variational analysis for options with stochastic volatility and multiple factors. SIAM Journal on Financial Mathematics, 9(2), 465-492, 2018.
O. Pironneau and Y. Achdou, Partial differential equations for option pricing, Elsevier/North-Holland, Amsterdam, 2009.

