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Black and Scholes model: Given a financial asset s(t), called the underlying,
with dynamics

ds = rs(t) dt+ �s(t) dW (t),

with volatility coefficient � 2 R, interest rate r � 0, standard Brownian
motion W (t).

Value of European options are solutions of PDEs
(
�ut � rxux � 1

2x
2
�

2
uxx + ru = 0, (x, t) 2 ⇥(0, T )⇥ R+,

u(x, T ) = uT (x), x 2 R+

with payoff uT at final time T .

Payoff uT given by call-option resp. put-option.
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(i) Achdou-Tchou model
(

ds(t) = rs(t) dt+ �(y(t))s(t) dW1(t),

dy(t) = ✓(µ� y(t)) dt+ ⌫ dW2(t),

with interest rate r, volatility coefficient � function of the factor y whose
dynamics involve a parameter ⌫ > 0, and positive constants ✓ and µ.

(ii) Heston model
(

ds(t) = s(t)
⇣
r dt+

p
y(t) dW1(t)

⌘
,

dy(t) = ✓(µ� y(t)) dt+ ⌫

p
y(t) dW2(t).

- Y. Achdou and N. Tchou, ESAIM Math. Model. Numer. Anal., 2002.

- S. L. Heston, Rev. Financial Stud., 1993.
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General model

dX(t) = b(t,X(t)) dt+
n�X

i=1

�i(t,X(t)) dWi.

The associated elliptic operator

Second-order differential operator A corresponding to the general dynamics

Au := ru� b ·ru� 1
2

n�X

i,j=1

ij�
>
j uxx�i,

Correlation coefficients ij : (0, T )⇥ ⌦! R between Wi and Wj , where for a
partition (I, J) of {0, . . . , N} with 0 2 J

⌦ :=
N

⇧
k=0

⌦k; with ⌦k :=

⇢
R when k 2 I,
(0,1) when k 2 J.

(1)
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Associated backward PDE

Parabolic PDE

(
�u̇(t, x) +A(t, x)u(t, x) = f(x, t), (t, x) 2 (0, T )⇥ ⌦;

u(T, x) = uT (x), x 2 ⌦,

We want to apply the Lions–Magenes theory for well-posedness of the PDE.
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Regularity results by Lions and Magenes
Given a Gelfand triple pair V ⇢ H = H

⇤ ⇢ V

⇤, set

W (0, T ) := {u 2 L

2(0, T ;V ) : u̇ 2 L

2(0, T ;V ⇤)}.

Theorem (Lions-Magenes)

If A(t) 2 L

1(0, T ;L(V, V ⇤)) is uniform continuous and semi-coercive and
(f, uT ) 2 L

2(0, T ;V ⇤)⇥H, then:
The PDE has a solution in W (0, T ) and the first parabolic estimate holds:
for some c > 0 not depending on (f, uT ):

kukL2(0,T ;V ) + kukL1(0,T ;H)  c(kuT kH + kfkL2(0,T ;V ⇤)). (2)

Under the additional hypothesis of semi-symmetry and
(f, uT ) 2 L

2(0, T ;H)⇥ V the second parabolic estimate holds:
the solution u 2 W (0, T ) belongs to L

1(0, T ;V ), u̇ belongs to L

2(0, T ;H),
and for some c > 0 not depending on (f, uT ):

kukL1(0,T ;V ) + ku̇kL2(0,T ;H)  c(kuT kV + kfkL2(0,T ;H)). (3)
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Semi-symmetry hypothesis

8
>>>>><

>>>>>:

A(t) = A0(t) +A1(t), A0(t) and A1(t) continuous linear mappings V ! V

⇤
,

A0(t) symmetric and continuously differentiable V ! V

⇤ w.r.t. t,

A1(t) is measurable with range in H, and for positive numbers ↵0, cA,1:
(i) hA0(t)u, uiV � ↵0kuk2V , for all u 2 V , and a.a. t 2 [0, T ],

(ii) kA1(t)ukH  cA,1kukV , for all u 2 V , and a.a. t 2 [0, T ],
(4)
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Bilinear form
Weighting function ⇢ : ⌦! R>0 of class C

1, let

L

2,⇢(⌦) := {v 2 L

0(⌦);

Z

⌦
v(x)2⇢(x) dx < 1} (5)

with norm

kvk⇢ :=

✓Z

⌦
v(x)2⇢(x) dx

◆1/2

. (6)

Au := ru� b ·ru� 1
2

n�X

i,j=1

ij�
>
j uxx�i, (7)

where

�

>
j uxx�i :=

n�X

k,`=1

�kj
@u

2

@xk@x`
�`i, (8)

and for v 2 D(⌦):

a(u, v) :=

Z

⌦
Au(x)v(x)⇢(x) dx (9)
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Lie derivative along a vector field

Let � be a vector field over ⌦ (i.e., a mapping ⌦! Rn).
The associated Lie derivative of u : ⌦! R is

�[u](x) :=
nX

i=0

�i(x)
@u

@xi
(x), for all x 2 ⌦. (10)
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Bilinear form II

� 1
2

Z

⌦
�

>
j uxx�ivij⇢ =

3X

p=0

a

p
ij(u, v), (11)

with

a

0
ij(u, v) :=

1
2

Z

⌦

nX

k,`=1

�kj�`i
@u

@xk

@v

@x`
ij⇢ = 1

2

Z

⌦
�j [u]�i[v]ij⇢, (12)

a

1
ij(u, v) :=

1
2

Z

⌦

nX

k,`=1

�kj�`i
@u

@xk

@(ij⇢)

@x`
v = 1

2

Z

⌦
�j [u]�i[ij⇢]

v

⇢

⇢, (13)

a

2
ij(u, v) :=

1
2

Z

⌦

nX

k,`=1

�kj
@(�`i)

@x`

@u

@xk
vij⇢ = 1

2

Z

⌦
�j [u](div �i)vij⇢, (14)

a

3
ij(u, v) :=

1
2

Z

⌦

nX

k,`=1

@(�kj)

@x`
�`i

@u

@xk
vij⇢ = 1

2

Z

⌦

nX

k=1

�i[�kj ]
@u

@xk
vij⇢. (15)
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Bilinear form

Contributions of the first and zero order terms resp. we get

a

4(u, v) := �
Z

⌦
b[u]v⇢; a

5(u, v) :=

Z

⌦
ruv⇢. (16)

Set

a

p :=
n�X

i,j=1

a

p
ij , p = 0, . . . , 3. (17)

The bilinear form associated with the above PDE is

a(u, v) :=
5X

p=0

a

p(u, v). (18)

F. Bonnans Variational analysis 13-11-13 11



Semicoercivity of the principal term
For � = (�1, . . . ,�n� ) the principal term of the bilinear form a is given by

a

0(u, v) =
n�X

i,j=1

Z

⌦
�j [u]�i[v]ij⇢ =

Z

⌦
ru

>
��

>rv⇢. (19)

Since  ⌫ 0, the above integrand is nonnegative when u = v; therefore,
a

0(u, u) � 0. When  = id we have that

a

00(u, u) :=

Z

⌦
|�>ru|2⇢ = a

0(u, u). (20)

In the presence of correlations it is natural to assume that we have a coercivity of
the same order. That is, we assume that

For some � 2 (0, 1]: ��

> ⌫ ���

>
, for all (t, x) 2 (0, T )⇥ ⌦. (21)

Therefore, we have
a

0(u, u) � �a

00(u, u). (22)
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Choice of Gelfand triple

Pair V ⇢ H of Hilbert spaces, with dense inclusion.
For some measurable function h : ⌦! R+ to be specified later we define

8
<

:

H := {v 2 L

0(⌦); hv 2 L

2,⇢(⌦)},
V := {v 2 H; �i[v] 2 L

2,⇢(⌦), i = 1, . . . , n�},
V := {closure of D(⌦) in V},

(23)

endowed with the natural norms,

kvkH := khvk⇢; kuk2V := a

00(u, u) + kuk2H . (24)
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Continuity of a1

a

1
ij(u, v) =

1
2

Z

⌦
�j [u]�i[ij⇢]

v

⇢

⇢, (25)

and so,

|a1ij(u, v)| 
n�X

j=1

k�j [u]k⇢
n�X

i=1

��
⇢

�1
�i[ij⇢]v

��
⇢

 CkvkH
n�X

j=1

k�j [u]k⇢,
(26)

whenever
⇢

�1
X

i

|�i[ij⇢]|  C

0
h (27)

It suffices that X

i

|�i[ij ]|+ ⇢

�1|�i[⇢]|  C

00
h. (28)
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Continuity of a2

a

2
ij(u, v) =

1
2

Z

⌦
�j [u](div �i)vij⇢, (29)

and so,

|a2ij(u, v)| 
n�X

j=1

k�j [u]k⇢
n�X

i=1

kdiv �ivk⇢

 CkvkH
n�X

j=1

k�j [u]k⇢,
(30)

whenever X

i

| div �i|  C

0
h. (31)
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Continuity of a34 = a3 + a4

a

34
ij (u, v) =

1
2

Z

⌦

nX

k=1

�i[�kj ]
@u

@xk
vij⇢�

Z

⌦
b[u]v⇢ =

Z

⌦
q[u]v⇢, (32)

At first sight, the continuity analysis needs a decomposition of the form

q =
n�X

k=1

⌘k�k (33)

where ⌘ is of minimum Euclidean norm, and then we get

|a34|  C

n�X

j=1

k�j [u]k⇢k⌘kvk2,⇢  kvkH
n�X

j=1

k�j [u]k⇢, (34)

whenever
|⌘|  Ch. (35)
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Continuity of a5

Since
a

5(u, v) :=

Z

⌦
ruv⇢, (36)

it is enough that p
|r|  Ch. (37)
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Synthesis for h

Factorizing the terms in a

1 and a

2 it suffices that for a.a. x 2 ⌦:

X

i

✓
|�i[ij ]|+

|�i[⇢]|
⇢

+ | div �i|
◆
+ |⌘|+

p
|r|  Ch. (38)
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Semi coercivity

By construction, for i 2 {1, 2, 34, 5}

|ai(u, v)|  CikukV kvkH (39)

and so,

a(u, u) �
Z

⌦
|�>ru|2⇢� CkukV kukH

= kuk2V � kuk2H � CkukV kukH .

(40)

The semicoercivity follows using Young’s inequality.
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Can we do better ?

Sometimes YES: using the notion of commutators of vector fields.
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Commutators of vector fields
Let u : ⌦! R be of class C

2. Let � and  be two C

1 vector fields over ⌦, both
of class. Remember the Lie derivative

�[u](x) :=
nX

i=0

�i(x)
@u

@xi
(x), for all x 2 ⌦. (41)

Commutator of � and  :

[�, ][u] := �[ [u]]� [�[u]]. (42)

Note that

�[ [u]] =
nX

i=1

�i
@( u)

@xi
=

nX

i=1

�i

 
nX

k=1

@ k

@xi

@u

@xk
+ k

@

2
u

@xk@xi

!
. (43)

So, the expression of the commutator is

[�, ] [u] =
nX

k=1

 
nX

i=1

�i
@ k

@xi
� i

@�k

@xi

!
@u

@xk
. (44)

This is the first-order differential operator associated with the Lie bracket of �,  .
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Commutators of vector fields
Let u : ⌦! R be of class C

2. Let � and  be two C

1 vector fields over ⌦, both
of class. Remember the Lie derivative

�[u](x) :=
nX

i=0

�i(x)
@u

@xi
(x), for all x 2 ⌦. (41)

Commutator of � and  :

[�, ][u] := �[ [u]]� [�[u]]. (42)

Note that

�[ [u]] =
nX

i=1

�i
@( u)

@xi
=

nX

i=1

�i

 
nX

k=1

@ k

@xi

@u

@xk
+ k

@

2
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!
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The adjoint to a vector field
Given two vector fields � and  over ⌦, define the spaces

V(�, ) := {v 2 H; �[v],  [v] 2 H} , (45)
V (�, ) := {closure of D(⌦) in V(�, )} . (46)

We define the adjoint �> of � (viewed as an operator over say C

1(⌦,R)), the
latter being endowed with the scalar product of L2,⇢(⌦)), by

h�>[u], vi⇢ = hu,�[v]i⇢ for all u, v 2 D(⌦), (47)

where h·, ·i⇢ denotes the scalar product in L

2,⇢(⌦). Thus, there holds the identity
Z

⌦
�>[u](x)v(x)⇢(x) dx =

Z

⌦
u(x)�[v](x)⇢(x) dx for all u, v 2 D(⌦). (48)

Furthermore,
Z

⌦
u

nX

i=1

�i
@v

@xi
⇢ dx = �

nX

i=1

Z

⌦
v

@

@xi
(u⇢�i) dx

= �
nX

i=1

Z

⌦
v

✓
@

@xi
(u�i) +

u

⇢

�i
@⇢

@xi

◆
⇢ dx.

(49)
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The adjoint to a vector field II

Hence,

�>[u] = �
nX

i=1

@

@xi
(u�i)� u�i

@⇢

@xi
/⇢ = �u div�� �[u]� u�[⇢]/⇢. (50)

We obtain that
�[u] + �>[u] +G⇢(�)u = 0, (51)

where
G⇢(�) := div�+

�[⇢]

⇢

. (52)

F. Bonnans Variational analysis 13-11-13 23



Continuity of the bilinear form associated with the
commutator

Setting, for v and w in V (�, ):

�(u, v) :=

Z

⌦
[�, ][u](x)v(x)⇢(x) dx, (53)

we have

�(u, v) =

Z

⌦
(�[ [u]]v � [�[u]]v)⇢ dx =

Z

⌦
 [u]�>[v]� �[u] >[v])⇢ dx

=

Z

⌦
(�[u] [v]� [u]�[v]) ⇢ dx+

Z

⌦
(�[u]G⇢( )v � [u]G⇢(�)v) ⇢ dx.

(54)
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Lemma

For �(·, ·) to be a continuous bilinear form on V (�, ), it suffices that, for some
c� > 0:

|G⇢(�)|+ |G⇢( )|  c�h a.e., (55)

and we have then:

|�(u, v)|  k [u]k⇢
⇣
k�[v]k⇢ + c� kvkH

⌘
+ k�[u]k⇢

⇣
k [v]k⇢ + c� kvkH

⌘
.

(56)

We apply the previous results with � := �i,  := �j . Set for v, w in V :

�ij(u, v) :=

Z

⌦
[�i,�j ][u](x)v(x)⇢(x) dx, i, j = 1, . . . , n�. (57)

We recall the definition V = {closure of D(⌦) in V}.

Corollary

Let (55) hold. Then the �ij(u, v), i, j = 1, . . . , n�, are continuous bilinear forms
over V .
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Redefining the space H

We now decompose q in the form

q =
n�X

k=1

⌘

00
k�k +

X

1i<jn�

⌘

0
ij [�i,�j ] a.e. (58)

We assume that ⌘0 and ⌘

00 are measurable functions over [0, T ]⇥ ⌦, that ⌘0 is
weakly differentiable, and that for some c

0
⌘ > 0:

h

0
⌘  c

0
⌘h, where h

0
⌘ := |⌘00|+

NX

i,j=1

��
�i[⌘

0
ij ]
�� a.e., ⌘

0 2 L

1(⌦). (59)
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Lemma

Let (28), (31), (35), and (59) hold. Then the bilinear form a(u, v) defined in (18)
is both (i) continuous and (ii) semi-coercive over V .
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Proof of (i).

(i) We only have to analyze the contribution of terms of the form setting
w := ⌘

0
ijv and taking here (�, ) = (�i,�j), we get that

Z

⌦
⌘

0
ij [�i,�j)[u]v⇢ = �(u,w), (60)

where �(·, ·) was defined in (53). Combining with lemma 1, we obtain

|�ij(u,w)|  k�j [u]k⇢
⇣
k�i[w]k⇢ + c�k⌘0ijk1 kvkH

⌘

+ k�i[u]k⇢
⇣
k�j [w]k⇢ + c�k⌘0ijk1 kvkH

⌘
.

(61)

Since
�i[w] = �i[⌘

0
ijv] = ⌘

0
ij�i[v] + �i[⌘

0
ij ]v, (62)

by (59):

k�i[w]k⇢  k⌘0ijk1 k�i[v]k⇢ +
��
�i[⌘

0
ij ]v
��
⇢
 k⌘0ijk1 k�i[v]k⇢ + c⌘kvkH . (63)

Combining these inequalities, point (i) follows.
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Proof of (ii).

Use u = v in (62) and (54). We find after cancellation in (54) that

�ij(u, ⌘0iju) =

Z

⌦
u(�i[u]�j [⌘

0
ij ]� �j [u]�i(⌘

0
ij))⇢

+

Z

⌦
(�i[u]G⇢(�j)� �j [u]G⇢(�i)) ⌘

0
iju⇢.

(64)

By (59), an upper bound for the absolute value of the first integral is
⇣
k�i[u]k⇢ + k�j [u]k⇢

⌘
khuk⇢  2 kukV kukH . (65)

By the same technique, we get |�ij(u, ⌘0iju)|  4 kukV kukH . We finally have
that for some c > 0

a(u, u) � a0(u, u)� c kukV kukH ,

� a0(u, u)� 1
2 kuk

2
V � 1

2c
2 kuk2H ,

= 1
2 kuk

2
V � 1

2 (c
2 + 1) kuk2H .

(66)

The conclusion follows.

Remark: Similar statement in the case of the second parabolic estimate.
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Application to stochastic volatility with multiple factor

ds = rs(t) dt+
PN

k=1 |yk(t)|�k
s

�k(t) dWk(t),

dyk = ✓k(µk � yk(t)) dt+ ⌫k|yk(t)|1��k dWN+k(t), k = 1, . . . , N.

(67)

We assume that  is constant and

�k 2 (0, 1]; ⌫k > 0; �k 2 (0,1). (68)

Examples when �k = 1: Heston �k = 1
2 , Tchou-Achdou �k = 1.

Assume that

s⇢s/⇢ 2 L

1; ⇢k/⇢ 2 L

1 if ⌦k = R; yk⇢k/⇢ 2 L

1 if ⌦k = R+. (69)
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Application to stochastic volatility with multiple factors
We get, assuming that �1 6= 0, when all yk 2 R, we can choose h

0 as

h

0 := 1 +
NX

k=1

�
|yk|�k(1 + s

�k�1) + (1� �k)|yk|��k + |yk|�k�1
�

+
X

k2I

|yk|1��k +
X

k2J

|yk|��k
.

(70)

Without the commutator analysis we would get h = h

0 + h

00, where

h

00 := rs

1��1
/|y1|�1 +

X

k

⌫k|̂k||yk|��k
. (71)

So, we have

h

0  h, (72)

meaning that it is advantageous to use the commutator analysis, due to the term
rs

1��1
/|y1|�1 in particular.

The second term has as contribution only for �k 6= 1 (since otherwise h

0 includes a
term of the same order).

F. Bonnans Variational analysis 13-11-13 31



Application to stochastic volatility with multiple factors
We get, assuming that �1 6= 0, when all yk 2 R, we can choose h

0 as

h

0 := 1 +
NX

k=1

�
|yk|�k(1 + s

�k�1) + (1� �k)|yk|��k + |yk|�k�1
�

+
X

k2I

|yk|1��k +
X

k2J

|yk|��k
.

(70)

Without the commutator analysis we would get h = h

0 + h

00, where

h

00 := rs

1��1
/|y1|�1 +

X

k

⌫k|̂k||yk|��k
. (71)

So, we have

h

0  h, (72)

meaning that it is advantageous to use the commutator analysis, due to the term
rs

1��1
/|y1|�1 in particular.

The second term has as contribution only for �k 6= 1 (since otherwise h

0 includes a
term of the same order).

F. Bonnans Variational analysis 13-11-13 31



Heston case

For the generalized multiple factor Heston model (GMH), i.e. when �k = 1/2,
k = 1 to N , we can take h equal to

h

0
H := 1 +

NX

k=1

⇣
|yk|

1
2 (1 + s

�k�1) + |yk|�
1
2

⌘
, (73)

when the commutator analysis is used, and when it is not, take h equal to

hH := hH + rs

1��1 |y1|�
1
2
. (74)

The original Heston model is for k = 1 and �1 = 1.
So we get an improvement only when �k 6= 1 !
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Weighting functions: Heston case

Lemma

(i) For the GMH model, using the commutator analysis, in case of a call option
with strike K, meaning that uT (s) = (s�K)+, we can take ⇢ = ⇢call, with

⇢call(s, y) := (1 + s

"00+3)�1⇧N
k=1y

"0

k (1 + y

"+2
k )�1

. (75)

(ii) For a put option with strike K > 0, we can take ⇢ = ⇢put, with

⇢put(s, y) := ⇧
N
k=1y

"0

k (1 + y

"+2
k )�1

. (76)
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Perspectives

1 American option
2 Extension to other classes
3 Associated Fokker-Planck equations
4 Degenerate cases: Asian options
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